A survey on bees (Insecta, Hymenoptera, Apoidea) and their associated mites in Chaharmahal and Bakhtiari province of Iran

Sahar Nazari¹, Alireza Monfared*, Alireza Nemati² and Shahrzad Azhari¹

¹ Department of Plant Protection, Faculty of Agriculture, Yasouj University, Yasouj, Iran.
² Department of Plant Protection, Faculty of Agriculture, University of Sharekord, Sharekord, Iran.

ABSTRACT. In this study 46 species of bees (Hymenoptera: Apoidea) and their 17 associated mite species from Chaharmahal and Bakhtiari province reigns with some specimens collected from Yasouj and Dezful have been examined. Four species of mites were new for Iran: Sennertia zhelochovtsevi Zachvatkin, Vidia lineata Oudemans, Sennertionyx manicati (Giard) and Crabrovidia oudemansi Fain. These mites were found on bees’ families of Halictidae, Megachilidae, Apidae and Andrenidae. The identified mites were belonging to families of Neopygmephoridae, Scutacaridae, Chaetodactylidae, Anoetidae, Acaridae, Saproglyphidae and Winterschmidtiidae. Among bees’ families, the most association was observed on Halictidae and the lowest was on Andrenidae. Bee species of Halictus (Halictus) resurgens Nurse, 1903 had the highest percentage of association. All specimens are deposited in the Iranian Pollinator Insects Museum of Yasouj University. Herein a list of mite species associated with bees and bees’ species list are provided. Some specimens belong to genera of Imparipes Berlese, 1903 (n=12 specimens) and Chaetodactylus Rondani, 1866 (n=11 specimens) were new for science which would be described in a subsequent paper.

Key words: Apoidea, mites, Iran, pollinator bees

Introduction

Bees and their relationships with other organisms have been important for human from ancient. It is clear that pollinating of flowering plants would ensure fruit formation, survival, and plant diversity. Pollinators are the most important factors for keeping plant diversity in protecting plant species in nature and increasing the productivity of human products, including many fruits and vegetables. Among pollinator animals, bees belong to superfamily Apoidea have the most important role in the pollination of various plants, especially plants which supply nutritional needs of human and domestic animals. There are approximately 20,000
bees species worldwide, with the greatest diversity found in xeric regions. The living bees are segregated into seven families Colletidae, Halictidae, Stenotritidae, Andrenidae, Melittidae, Megachilidae and Apidae (Michener, 2007). Among these families, Stenotritidae, restricted to Australia. In Iran, like to other countries, most species of Apoidea are wild and always live in mountainous regions (Monfared et al., 2007). Bees of superfamily Apoidea, like most insects, are rich in dietary diversity. In addition to their paramount role in pollination of flowering plant, these bees have a large biological connection with many living organisms. Mites are one of the most important limiting factors of the population of bees if they have a parasitic role. Some of other mites, particularly group Heterostigmatina known as phoretic mites (Klimov et al., 2007). This relationship is a kind of symbiosis or parasitic and is divided into two groups of phoretic mites and parasite mites according to the type of life and behavior of the bees (Klimov et al., 2007). For example the mites of the Chaetodactylidae family are extensively present on bees, especially on Megachilidae bees, and in some cases serious injuries have been reported by these mites to managed colonies (Klimov & O’Connor, 2004). Mites of the genus Parapygmephorus Cross, 1965 (Acari; Heterostigmata; Neopygmephoridae) are associated with different Halictid bees (Hymenoptera: Halictidae) in the Holarctic (Hajiqanbar et al., 2011). There is not a comprehension study about mite associated with bees in Iran. The main purpose of this study was finding and identifying of mite species associated with bees’ superfamily Apoidea of Chaharmahal and Bakhtiari. Also we added information we found about these mite from Yasouj and Dezful bees which was available in our museum in Yasouj University.

Material and methods
In this survey, we collected 1220 pollinator bees from Chaharmahal and Bakhtiari province (various cities), Yasouj (a city in Kohgiluyeh and Boyerahmad Province) and Dezful (a city in Khuzestan Province). All bees were examined for associated mites. Among these, 148 bees were associated with mites. Sampling was begun at the beginning of flowering of the plants during 2016 and 2017. Sampling locations were recorded by Garmin eTrix Hc GPS. At the time of sampling, collected bees were stored in 70% alcohol-containing tubs and transferred to the lab. Mites were separated from bee body by a fine brush under a Nicon SMZ745T stereomicroscope, cleared in Nesbitt's fluid and mounted in Faure medium. Mites identifications carried out by P. Klimov (Michigan University, USA), and H. Hajiqanbar (Tarbiat Modares University, Iran). Bees identified by second author (AM). All identified species were deposited in the “Iranian pollinator Insects Museum of Yasouj University” located in Plant Protection Department at the Faculty of Agriculture, Yasouj University, Yasouj, Iran (IPIM-YU). Number of associated mites for Trombidiformes, Acariformes and Sarcoptiformes in this study shown in Table 2 and Table 3.

Results
From 46 species of bees (Hymenoptera: Apoidea) which were examined (Table 1) collectively 17 associated mite species have been found. Among the bees, there were nine species of Apidae, 21 species of Halictidae, 15 species of Megachilidae and One species of Andrenidae. The mites found on bees families of Halictidae, Megachilidae, Apidae and Andrenidae. Additionally, the presence of two new species of mites, genera Imparipes and Chaetodactylus, were detected; these are currently undergoing descriptive study. Halictus (Halictus) resurgens had the highest...
percentage of association. Bee families and associated mites accounts come as follow:

Family Halictidae

Subfamily: Nomiiinae

Pseudapis (Pseudapis) diversipes (Latreille, 1806)

Material examined: Chaharmahal and Bakhtiari province, Ardal, Rostamabad (31°59’59" N, 50°39’42" E) 1388m, 4.VI.2016, 2♀♀; Shahrekord, Nafrch (32°24’49.63" N, 50°38’20.84" E) 2230m, 2.VIII.2016, 4♀♀, 20.IX.2016, 4♀♀, 2♂♂; Shahrekord, Asadabad (32°24’49.63" N, 50°38’20.84" E) 2227.20m, 5.X.2016, 7♀♀, 2♂♂, pinned (IPIM-YU).

General distribution: Europe (Pauly, 2007), North Africa (Astafurova & Pesenko, 2006), Middle East to central Asia and Pakistan (Özbek, 1979), Turkey (Dickmen & Çağatay, 2007).

Host plant associations: Medicago sp. (Fabaceae), Mentha sp. (Lamiaceae).

Mite association: Anoetus szelenyii (Anoetidae).

Pseudapis (Pseudapis) lobata (Olivier, 1812)

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Asadabad (32°22’41.46" N, 50°35’36.62" E), 2227.20m, 22.VIII.2016, 1♀, 2♂♂, pinned (IPIM-YU).

General distribution: Turkmenistan (Astafurova & Pesenko, 2006), Turkey and Iran (Ascher & Pickering, 2016).

Host plant associations: Medicago sp. (Fabaceae), Mentha sp. (Lamiaceae).

Mite association: Anoetus szelenyii (Anoetidae).

Pseudapis (Pseudapis) bispinosa (Brullé, 1832)

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Asadabad (32°22’41.46" N, 50°35’36.62" E), 2227.20m, 22.VIII.2016, 2♀♀, 5.X.2016, 2♀♀, pinned (IPIM-YU).

General distribution: Europe to Eastern Asia and North Africa (Ebmer, 1978; Pesenko, 2005).

Host plant associations: Astragalus sp. (Fabaceae).

Mite association: Anoetus sp.1 (Anoetidae).

Subfamily: Halictinae

Lasiglossum (Evylaenus) mesosclerum (Pérez, 1903)

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Asadabad (32°22’41.46" N, 50°35’36.62" E), 2227.20m, 5.X.2016, 1♂; Shahrekord, Teshniz (32°05’20.43" N, 50°35’36.62" E), 2227.20m, 5.X.2016, 1♂, pinned (IPIM-YU).

General distribution: Europe to Eastern Asia and North Africa (Ebmer, 1978; Pesenko, 2005).

Host plant associations: Astragalus sp. (Fabaceae).

Mite association: Anoetus sp.1 (Anoetidae).

Lasiglossum (Evylaenus) interruptum (Panzer, 1798)

Material examined: Chaharmahal and Bakhtiari province, Ardal, Rostamabad (31°59’59" N, 50°39’42" E), 1388m, 4.VI.2016, 1♂; Shahrekord, Teshniz (32°05’20.43" N,
Bees and their associated mites

50°47'08.96'' E), 2055m, 21.IV.2017, 1♀, pinned (IPIM-YU).

General distribution: Europe to western Asia, Northern Africa (Ebmer, 1978; Pesenko, 2005).

Host plant associations: Mentha sp. (Lamiaceae), Astragalus sp. (Fabaceae).

Lasioglossum (Evylaeus) pauxillum (Schenck, 1853)

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Asadabad (32°22'04.16'' N, 50°35'36.62'' E), 2227.20m, 22.VIII.2016, 1♀, pinned (IPIM-YU).

General distribution: Europe (Pauly, 2007), Russia and Middle East to central Asia (Pesenko, 2005).

Host plant associations: Medicago sp. (Fabaceae).

Halictus (Halictus) marginatum (Brullé, 1832)

Material examined: Chaharmahal and Bakhtiari province, Teshniz (32°05'20.43'' N, 50°35'36.62'' E), 2055m, 21.IV.2017, 1♀, pinned (IPIM-YU).

General distribution: Europe to Western Asia (Pauly, 2007; Pesenko, 2005).

Host plant associations: Astragalus sp. (Fabaceae).

Lasioglossum (Evylaeus) pseudoleptorhynchum (Blüthgen, 1931)

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Asadabad (32°22'41.46'' N, 50°35'36.62'' E), 2227.20m, 19.VIII.2016, 1♀, pinned (IPIM-YU).

General distribution: Iran, Afghanistan and Pakistan (Ascher & Pickering, 2016).

Host plant associations: Medicago sp. (Fabaceae).

Lasioglossum (Evylaeus) nigripes (Lepeletier, 1841)

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Asadabad (32°22'41.46'' N, 50°35'36.62'' E), 2227.20m, 19.VIII.2016, 1♀, pinned (IPIM-YU).

General distribution: Europe to Central Asia, Northern China and Northern India (Pesenko, 2005).

Host plant associations: Medicago sp. (Fabaceae).

Halictus (Halictus) resurgens Nurse, 1903

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Nařč (32°24'20.84'' N, 50°38'07.96'' E), 2230m, 2.V.2016, 1♀, 2.VIII.2016, 7♀♀, 4♂♂, 20.IX.2016, 4♀♀, 4♂♂, 23.IX.2016, 4♀♀, 7♂♂, Kuhrang, Dimeh (32°26'12.35'' N, 50°09'24.22'' E), 2228m, 29.V.2016, 7♀♀; Ardal, Rostamabad (31°59'59"N, 50°59'42"E), 1388m, 4.VI.2016, 1♀; Shahrekord, Asadabad (32°22'41.46'' N, 50°35'36.62'' E), 2227.20m, 19.VIII.2016, 35♀♀, 10♂♂, 22.VIII.2016, 43♀♀, 5.X.2016, 2♀♀, pinned (IPIM-YU).

General distribution: Northeast Africa to Central Asia (Pesenko, 2005).

Host plant associations: Medicago sp. (Fabaceae), Mentha sp. (Lamiaceae), Astragalus sp. (Fabaceae).

Mite association: Anoetus sp.2, Anoetus sp.3 (Anoetidae); Crabrovidia oudemansi (Saproglyphidae); Parapygmephorus crossi, Parapygmephorus krinosancius, Parapygmephorus delyorum (Neopygmephoridae).

Halictus (Halictus) brunnescens (Eversmann, 1852)

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Asadabad (32°22'41.46'' N, 50°35'36.62'' E), 2227.20m, 19.VIII.2016, 1♀, 1♂, 22.VIII.2016, 1♀, 5♂♂, 23.IX.2016, 2♀♀, 5.X.2016, 1♂, pinned (IPIM-YU).

General distribution: Europe to Central Asia, Northern China and Northern India (Pesenko, 2005).

Host plant associations: Medicago sp. (Fabaceae).

Mite association: Anoetus sp.2, Anoetus sp.3 (Anoetidae).
Halictus (Halictus) maculatus Smith, 1848
Material examined: Chaharmahal and Bakhtiar province, Kuhrang, Dimeh (32°26'12.35" N, 50°09'24.22" E), 2228m, 29.V.2016, 1♀, pinned (IPIM-YU).
General distribution: Europe to Central Asia (Pesenko, 2005).
Host plant associations: Astragalus sp. (Fabaceae).

Halictus (Halictus) patellatus Morawitz, 1874
Material examined: Chaharmahal and Bakhtiar province, Kuhrang, Dimeh (32°26'12.35" N, 50°09'24.22" E), 2228m, 29.V.2016, 1♀; Shahrekord, Asadabad (32°22'41.46" N, 50°35'36.62" E), 2227m, 5.X.2016, 1♀, pinned (IPIM-YU).
Host plant associations: Medicago sp. (Fabaceae), Astragalus sp. (Fabaceae).
Mite association: Parapygmephorus crossi (Neopygmephoridae), Parapygmephorus khorasanicus (Neopygmephoridae).

Halictus (Halictus) submodernus Blüthgen, 1936
Material examined: Chaharmahal and Bakhtiar province, Shahrekord, Asadabad (32°22'41.46" N, 50°35'36.62" E), 2227m, 5.X.2016, 1♀, pinned (IPIM-YU).
Host plant associations: Medicago sp. (Fabaceae).

Halictus (Selodonia) smaragdulus Vachal, 1895
Material examined: Chaharmahal and Bakhtiar province, Kuhrang, Dimeh (32°26'12.35" N, 50°09'24.22" E), 2228m, 29.V.2016, 1♀; Shahrekord, Asadabad (32°22'41.46" N, 50°35'36.62" E), 2227m, 5.X.2016, 1♀, pinned (IPIM-YU).
General distribution: Western Europe (Pauly, 2007), Turkey and Iran.
Host plant associations: Astragalus sp. (Fabaceae), Medicago sp. (Fabaceae).
Bees and their associated mites

Host plant associations: **Medicago** sp. (Fabaceae).

Sphecodes (Sphecodes) puncticeps Thomson, 1870

Material examined: Chaharmahal and Bakhtiar province, Shahrekord, Asadabad (32°22'41.46" N, 50°35'36.62" E), 2227.20m, 22.VIII.2016, 1♀, pinned (IPIM-YU).

General distribution: Europe to Middle East, North Africa and Russia (Ascher & Pickering, 2016)

Host plant associations: **Medicago** sp. (Fabaceae).

Family Megachilidae

Subfamily: Megachilinae

Megachile (Megachile) **centuncularis** (Linnaeus, 1758)

Material examined: Chaharmahal and Bakhtiar province, Ardal, Rostamabad (31°59'59''N, 50°39'42''E), 1388m, 4.VI.2016, 2♀♀, pinned (IPIM-YU).

Material examined: Chaharmahal and Bakhtiar province, Shahrekord, Asadabad (32°22'41.46" N, 50°35'36.62" E), 2227.20m, 5.X.2016, 1♀, pinned (IPIM-YU).

Host plant associations: **Astragalus** sp. (Fabaceae).

Mite association: **Vidia** sp.1 (Winter-schmidtiiidae); **Sancassania** sp. (Acaridae).

Megachile (Pseudomegachile) **saussurei** Radoszkowski, 1874

Material examined: Chaharmahal and Bakhtiar province, Shahrekord, Nağh (32°24'49.63" N, 50°38'20.84" E), 2230m, 2.VII.2016, 1♂, 2♀♀, 20.IX.2016, 1♀; Kohgiluyeh and Boyer-Ahmad province, Yasouj (30°39'06.53'' N, 51°35'26.5'' E), 1817.52m, 24.V.2017, 1♀, pinned (IPIM-YU).

General distribution: Greece and Turkey (Grace, 2010).

Host plant associations: **Medicago** sp. (Fabaceae).

Mite association: **Vidia** sp.2 (Winter-schmidtiiidae).

Megachile (Eutricharaea) **anatolica** Rebmann, 1968

Material examined: Chaharmahal and Bakhtiar province, Shahrekord, Nağh (32°24'49.63" N, 50°38'20.84" E), 2230m, 2.VII.2016, 1♀, 20.IX.2016, 1♂; Kohgiluyeh and Boyer-Ahmad province, Yasouj (30°39'06.53'' N, 51°35'26.5'' E), 1817.52m, 24.V.2017, 1♀, pinned (IPIM-YU).

General distribution: Greece and Turkey (Grace, 2010).

Host plant associations: **Medicago** sp. (Fabaceae).

Mite association: **Vidia** sp.2 (Winter-schmidtiiidae).
(32°24'49.63" N, 50°38'20.84" E), 2230m, 20.IX.2016, 1♀, 23.IX.2016, 1♀, pinned (IPIM-YU).

General distribution: Russia, Kazakhstan, Libya, Egypt, Georgia, Turkey and Eastern and Southern Europe (Ascher & Pickering, 2016).

Host plant associations: *Medicago* sp. (Fabaceae).

Mite association: *Vidia* sp.1 (Winter-schmidtiiidae).

Megachile (Eutricharaea) rotundata (Fabricius, 1787)

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Nafrch (32°24'49.63" N, 50°38'20.84" E), 2230m, 20.IX.2016, 1♀, Shahrekord, Asadabad (32°22'41.46" N, 50°35'36.62" E), 2227.20m, 5.X.2016, 2♀♀, pinned (IPIM-YU).

General distribution: Cyprus, Europe, Greece, North Africa, Southern and Eastern America, and Turkey (Özbek & Zanden, 1994; Banaszak & Romasenko, 1998; Amiet et al., 2004; Ornosa et al., 2007; Ban-Calefariu, 2009; Grace, 2010).

Host plant associations: *Medicago* sp. (Fabaceae), *Mentha* sp. (Lamiaceae).

Megachile (Eutricharaea) apicalis Spinola, 1808

Material examined: Chaharmahal and Bakhtiari province, Rostamabad, Ardal (31°59'59" N, 50°39'42" E), 1388m, 4.VI.2016, 4♀♀, Shahrekord, Asadabad (32°22'41.46" N, 50°35'36.62" E), 2227.20m, 2.VIII.2016, 2♀♀, 19.VIII.2016, 1♂, 22.VIII.2016, 1♂, 5.X.2016, 1♂.

General distribution: Canada, Cyprus, Greece, North Africa, Palestine, Turkey (Özbek & Zanden, 1994; Banaszak & Romasenko, 1998; Amiet et al., 2004; Ornosa et al., 2007; Ban-Calefariu, 2009; Grace, 2010), Iran, Russia, Uzbekistan, Pakistan, Tajikistan and Europe (Ascher & Pickering, 2016).

Host plant associations: *Medicago* sp. (Fabaceae), *Astragalus* sp. (Fabaceae), *Mentha* sp. (Lamiaceae).

Megachile (Eutricharaea) leachella Curtis, 1828

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Asadabad (32°22'41.46" N, 50°35'36.62" E), 2227.20m, 5.X.2016, 7♀♀, Shahrekord, Teshniz (32°05'20.43" N, 50°47'08.96" E), 2055m, 21.IV.2017, 1♂, pinned (IPIM-YU).

General distribution: Europe (Özbek & Zanden, 1994; Banaszak & Romasenko, 1998; Ornosa et al., 2007; Ban-Calefariu, 2009; Grace, 2010).

Host plant associations: *Astragalus* sp. (Fabaceae), *Mentha* sp. (Lamiaceae).

Megachile (Creightonella) albisecta (Klug, 1817)

Material examined: Kohgiluyeh and Boyer-Ahmad province, Yasouj (30°39’06.53” N, 51°35’26.5” E), 1817.52m, 15.VI.2017, 4♀♀, 3♂♂, pinned (IPIM-YU).

General distribution: Russia (*NC, CR), W, E and S Europe, N Africa, Azerbaijan, Turkey, Cyprus, Syria, Israel, Iran, Turkmenistan, Uzbekistan, Kyrgyzstan (Ascher & Pickering, 2016).

Host plant associations: *Medicago* sp. (Fabaceae), *Astragalus* sp. (Fabaceae).

Mite association: *Vidia lineata* (Winter-schmidtiiidae).

Megachile (Creightonella) sp.

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Nafrch (32°24'49.63" N, 50°38'20.84" E), 2230m, 20.IX.2016, 1♂.

Host plant associations: *Medicago* sp. (Fabaceae), *Astragalus* sp. (Fabaceae).

Megachile (Pseudomegachile) sp.

Material examined: Chaharmahal and Bakhtiari province, Kuhrang, Dimeh...
Bees and their associated mites

Host plant associations: Astragalus sp. (Fabaceae).

Mite association: Sennertia nr.zhelochovtsevi (Chaetodactylidae). Chaetodactylus sp. (Chaetodactylidae).

Family: Apidae

Subfamily: Xylocopinae

Xylocopa (Xylocopa) violacea (Linnaeus, 1758)

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Kuhrang, Dimeh (32°26'12.35'' N, 50°09'24.22'' E), 2228m, 29.V.2016, 1♂, pinned (IPIM-YU).

Host plant associations: Astragalus sp. (Fabaceae).

Mite association: Sennertia nr.zhelochovtsevi (Chaetodactylidae).

Xylocopa (Proxylocopa) olivieri Lepeletier, 1841

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Teshniz (32°05'20.43'' N, 50°47'08.96'' E), 2055m, 23.IV.2017, 2♀♀, pinned (IPIM-YU).

Host plant associations: Astragalus sp. (Fabaceae).

Mite association: Sennertia nr.zhelochovtsevi (Chaetodactylidae).
Xylocopa (Proxylocopa) rufa Friese, 1901

Material examined: Chaharmahal and Bakhtiari province, Kuhrang, Dimeh (32°26′12.35″ N, 50°09′24.22″ E), 2228m, 29.V.2016, 1♂, pinned (IPIM-YU).

General distribution: Central Asia (Ascher & Pickering, 2016).

Host plant associations: Astragalus sp. (Fabaceae).

Ceratina sp.

Material examined: Chaharmahal and Bakhtiari province, Kuhrang, Dimeh (32°26′12.35″ N, 50°09′24.22″ E), 2228m, 29.V.2016, 1♂, pinned (IPIM-YU).

Host plant associations: Astragalus sp. (Fabaceae).

Subfamily: Apinae

Eucera (Hetereucera) alfkeni Risch, 2003

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Teshniz (32°05′20.43″ N, 50°38′20.84″ E), 2230m, 21.IV.2017, 2♂♂, pinned (IPIM-YU).

General distribution: Middle East (Ascher & Pickering, 2016).

Host plant associations: Astragalus sp. (Fabaceae).

Eucera (Eucera) cypria Alfken, 1933

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Teshniz (32°05′20.43″ N, 50°38′20.84″ E), 2230m, 21.IV.2017, 1♂, 23.IV.2017, 1♂, pinned (IPIM-YU).

General distribution: southeastern Europe and Middle East (Ascher & Pickering, 2016).

Host plant associations: Astragalus sp. (Fabaceae).

Eucera sp.

Material examined: Chaharmahal and Bakhtiari province, Shahrekord, Teshniz (32°05′20.43″ N, 50°38′20.84″ E), 2230m, 21.IV.2017, 2♂♂, pinned (IPIM-YU).

Host plant associations: Astragalus sp. and Medicago sp. (Fabaceae); Sinapis (Brassicaceae) and Foumaria (Papaveraceae).

Mite association: Imparipes sp. (Scutacaridae).

Identified mites

The mites were identified from the three orders of Trombidiformes, Acariformes and Sarcoptiformes, and families of Neopygmephoridae, Chaetodactylidae, Anoetidae, Acaridae, Saproglyphidae and Winterschmidtiidae (Table 1). Identified genus was Parapygmephorus, Sennertia, Sennertionyx, Chaetodactylus, Anoetus, Vidia, Sancassania, Crabrovidia and Imparipes.
Mites *Sennertia zhelochovtsevi*, *Vidia lineata*, *Sennertionyx manicati* and *Crabrovidia oudemansi* were new for the fauna of Iran and the Mite *Imparipes* sp. and *Chaetodactylus* sp. these two species are new to science but will be described elsewhere was new for the science (Table 1).

Table 1. List of phoretic mites on bees (Hymenoptera: Apoidea).

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trombidiformes</td>
<td>Neopygmemphoridae</td>
<td>1. Parapygmemphorus crossi Mahunka, 1974</td>
</tr>
<tr>
<td>Scutacaridae</td>
<td></td>
<td>1. Imparipes sp.</td>
</tr>
<tr>
<td>Acariformes</td>
<td>Chaetodactylidae</td>
<td>1. Sennertia nr. zhelochovtsevi Zachvatkin, 1941</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Sennertia (Sennertia) cerambycina (Scopoli, 1763)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Chaetodactylus sp.</td>
</tr>
<tr>
<td>Anoetidae</td>
<td></td>
<td>1. Anoetus szelenyii Mahunka, 1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Anoetus sp.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3. Anoetus sp.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4. Anoetus sp.3</td>
</tr>
<tr>
<td>Sarcoptiformes</td>
<td>Winterschmidtiidae</td>
<td>1. Vidia lineate Oudemans, 1917</td>
</tr>
<tr>
<td>Acaridae</td>
<td></td>
<td>1. Sancassania sp.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. Sennertionyx manicati (Giard, 1900)</td>
</tr>
<tr>
<td>Saproglyphidae</td>
<td></td>
<td>1. Crabrovidia oudemansi Fain, 1971</td>
</tr>
</tbody>
</table>

Table 2. Identified mites associated with bees from Trombidiformes.

<table>
<thead>
<tr>
<th>Bees species</th>
<th>Mite species</th>
<th>Number of mites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halictus resurgens</td>
<td>Parapygmemphorus crossi</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Parapygmemphorus khorasanicus</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Parapygmemphorus delyorum</td>
<td>2</td>
</tr>
<tr>
<td>Halictus patellatus</td>
<td>Parapygmemphorus crossi</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Parapygmemphorus khorasanicus</td>
<td>3</td>
</tr>
<tr>
<td>Anthophora sp.</td>
<td>Imparipes sp.</td>
<td>12</td>
</tr>
</tbody>
</table>
Table 3. Identified mites associated with bees from Sarcoptiformes.

<table>
<thead>
<tr>
<th>Bees Species</th>
<th>Mite Species</th>
<th>Number of mites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudapis endentata</td>
<td>Anoetus szelenyi</td>
<td>217</td>
</tr>
<tr>
<td>Pseudapis diversipes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudapis bispinosa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lasioglossum mesosclerum</td>
<td>Anoetus sp.1</td>
<td>10</td>
</tr>
<tr>
<td>Halictus resurgens</td>
<td>Anoetus sp.2</td>
<td>24</td>
</tr>
<tr>
<td>Halictus brunnescens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halictus resurgens</td>
<td>Anoetus sp.3</td>
<td>18</td>
</tr>
<tr>
<td>Halictus brunnescens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megachile albisecta</td>
<td>Vidia lineata</td>
<td>23</td>
</tr>
<tr>
<td>Megachile pilidens</td>
<td>Vidia sp.1</td>
<td>14</td>
</tr>
<tr>
<td>Megachile centuncularis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megachile anatolica</td>
<td>Vidia sp.2</td>
<td>19</td>
</tr>
<tr>
<td>Megachile pilidens</td>
<td>Sancassania sp.</td>
<td>5</td>
</tr>
<tr>
<td>Megachile centuncularis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halictus resurgens</td>
<td>Crabrovidia oudeonansi</td>
<td>1</td>
</tr>
<tr>
<td>Xylocopa olivieri</td>
<td>Sennertia nr. zhelochotsevi</td>
<td>7</td>
</tr>
<tr>
<td>Lithurgus chrysurus</td>
<td>Sennertia nr. zhelochotsevi</td>
<td>5</td>
</tr>
<tr>
<td>Anthidium taeniatum</td>
<td>Sennertia manici</td>
<td>4</td>
</tr>
<tr>
<td>Xylocopa varentzowi</td>
<td>Sennertia (Sennertia) cerambycina</td>
<td>10</td>
</tr>
<tr>
<td>Xylocopa varentzowi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lithurgus chrysurus</td>
<td>Chaetodactylus sp.</td>
<td>1</td>
</tr>
</tbody>
</table>

Discussion

By examination of 1220 pollinator bees which were collected from different regions in cities and villages of Chaharmahal and Bakhtiari province, Yasouj and Dezful for associated mites, we found that bees are belong to Four families including Andrenidae, Megachilidae, Halictidae, and Apidae. Of these, 46 species were identified, of which 15 bees species (n= 148 bees specimens) were associated by mites. Like other research on bee-mite link (Azhari et al., 2018a, 2018b; Kiani Bakiani et al., 2016; Hajijanbar et al., 2011; Ebermann & Fain, 2002; Woodring, 1973; Oconnor & Eickwort, 1988; Eickwort, 1990), the family, Halictidae had the highest association. In study areas, bees of family Andrenidae had the least association. The most frequent bee-mite association observed on *Halictus resurgens* Nurse, 1903. So far, there has not been raised a comprehensive checklist of mites associated with bees in Iran. Several limited studies by Azhari et al. (2018a, 2018b) and Kiani Bakiani et al. (2016) introduced a number of mite species associated bees in Fars, Tehran and Ardebil provinces. Recently, Azhari et al. (2018b) reported *P. crossi* Mahunka, 1974 from *Halictus (Halictus) resurgens* Nurse, 1903 from Yasuj (Park-e- jangali). We found 18 phoretic mite species associated with these bees.
The most commonly found mites in this study on Apoidea superfamily were belonging to Sarcoptiformes superorder and family of Anoetidae. In this study, the mite samples belonged to nine genera, which the most commonly associated mites were of the genus *Anoetus*. Our observations shown that often, the most abundant populations of associated mites are in form of deutonymphs which called hypopus (plural: hypopi). We observed in our samples dense populations of these mites on bees collected from nature. But one of the main problems always is the absence of an internal expert for identifications of hypopus mites form and a shortage of foreign specialists.

Although some Iranain known experts have done good research on mites in Iran, the need for training specialists on this type of mites in our country is necessary. However, all know that Iran has a very rich fauna. Therefore, future comprehensive planning should be training the specialists in different animal taxa because it can help preserve the genetic resources of our country and also we should considering training of specialist who could be expert on world’s animal taxa based on our rich fauna which needs to have a comprehensive big museums and collections.

Acknowledgments

The authors are very grateful to Dr. Hajighanbar (Tarbiat Modares University, Iran) and Dr. Pavel Klimov (Michigan University, USA) for their cooperation to the identification of the specimens. Also, we thanks to anonymous referees which their comments had improved the paper.

Conflict of Interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

بررسی زنبورهای بالاخانواده (Insecta: Hymenoptera) Apoidea و کنه‌های مرتبط با آنها در استان چهارمحال و بختیاری ایران

سحر نظری، علیرضا منفرد، علیرضا نعمتی و شهرزاد ازهاری

چکیده: در این مطالعه، 42 گونه از زنبورهای گرده‌افشان بالاخانواده Apoidea و 11 گونه از کنه‌های مرتبط با آنها در استان چهارمحال و بختیاری و تعدادی دیگر از گونه‌ها از گردوه و دزفول جمع‌آوری و مورد بررسی قرار گرفت. چهار گونه از کنه‌ها برای ایران جدید بودند: Sennertia zhelochovtsevi، Vidia lineata و Sennertionyx manicati و Crabrovidia oudemansi. کنه‌های شناسایی شده متعلق به خانواده‌های Neopygmephoridae، Scutacaridae، Chaetodactylidae، Anoetidae، Acaridae، Saproglyphidae، Winterschmidtiidae و Apidae خانواده‌های Halictidae، Megachilidae، Apidae، Andrenidae و Halictus (Halictus) resurgens Nurse، 1903 در میان زنبورهای شناسایی شده بیشترین کنه‌های همراه را داشتند. گونه‌های گرده‌افشان با بالاترین درصد انتقال دریافتی با کنه‌ها بودند. تمام نمونه‌ها در کلکسیون حشرات گرده‌افشان ایران در دانشگاه یاسوج ذخیره می‌شوند. در این مقاله، 12 نمونه از Imparipes، 11 نمونه از Chaetodactylus و 18 نمونه از کنه‌های زنبورهای گرده‌افشان ایران را در مطالعه نقش دارند. بعضی از نمونه‌ها متعلق به جنس Chaetodactylus Rondani، 1866 و Imparipes Berlese، 1903 برای دنبال علم جدید بودند که در مقاله آینده نشان داده می‌شود.

واژگان کلیدی: Apoidea، کنه‌ها، ایران، زنبورهای گرده‌افشان