Volume 9, Issue 4 (2023)                   J. Insect Biodivers. Syst 2023, 9(4): 711-725 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ghorbanian M, Karimi-Malati A, Jalaeian M, Fazeli Sangani M. Maximum entropy modelling to predict the impact of abiotic variables on the potential distribution of Orthotomicus erosus (Wollaston) (Coleoptera, Curculionidae, Scolytinae) in Iran. J. Insect Biodivers. Syst 2023; 9 (4) :711-725
URL: http://jibs.modares.ac.ir/article-36-70027-en.html
1- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
2- Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran , a_karimi@guilan.ac.ir
3- Department of Plant Protection, Rice Research Institute of Iran, (AREEO), Rasht, Iran
4- Department of Soil Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
Abstract:   (743 Views)
Risk assessment is utilized to prioritize preventive measures based on the probability of dispersal success of pests. A main part of the risk assessment procedure is to determine the effects of environmental variables on the current and potential geographical distributions. In the present study, the spatial distribution of the Mediterranean pine engraver, Orthotomicus erosus (Wollaston), was mapped and predicted using MaxEnt. Presence records of O. erosus (north, northeast, west and centre of Iran), environmental and topographic variables, with the lowest correlations among themselves and the highest effects on the pest distribution were used. A total of 76 presence records of O. erosus were collected. The results of the distribution prediction modelling revealed that the northern part of Iran and the areas along the Zagros are the most suitable habitats for this species. Examining environmental variable importance on the distribution of O. erosus showed that the variables related to temperature and precipitation had more contribution in the MaxEnt model, respectively than the altitude. Furthermore, the high accuracy of the model (0.928) indicated that the MaxEnt had an acceptable performance for the prediction of O. erosus distribution. These findings would provide primary and critical information about the potential distribution of O. erosus in Iran, which could be effective for the stable population regulation of this destructive pest.
Full-Text [PDF 2094 kb]   (701 Downloads)    

Article Type: Research Article | Subject: Biodiversity
Received: 2023/06/23 | Accepted: 2023/08/13 | Published: 2023/08/20

References
1. Ahadiyat, A. & Akrami, M.A. (2015) Oribatid mite (Acari: Oribatida) associated with bark beetles (Coleoptera: Curculionidae: Scolytinae) in Iran, with a review on Paraleius leontonychus (Berlese) and a list of bark beetles in association with this species. Persian Journal of Acarology, 4, 355-371.‏
2. Akbulut, S. & Stamps, W.T. (2012) Insect vectors of the pinewood nematode: A review of the biology and ecology of Monochamus species. Forest Pathology, 42, 89-99. [DOI:10.1111/j.1439-0329.2011.00733.x]
3. Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. [DOI:10.1111/j.1365-2664.2006.01214.x]
4. Amini, S., Hosseini, R. & Sohani, M.M. (2013) A faunal study of bark beetles (Coleoptera: Curculionidae: Scolytinae) in Guilan province in North of Iran. Entomofauna, 34, 169-176.‏‏
5. Andrew, N.R., Hill, S.J., Binns, M., Bahar, M.H., Ridley, E.V., Jung, M.P. & Khusro, M. (2013) Assessing insect responses to climate change: What are we testing for? Where should we be heading? Peer Journal, 1, e11. [DOI:10.7717/peerj.11]
6. Arkani, T., Ostovan, H., Farazmand, H. & Gheybi, M. (2018) Seasonal population fluctuations of Mediterranean pine bark beetle, Orthotomicus erosus (Wollaston) (Coleoptera: Curculionidae: Scolytinae), in the Tehran Chitgar forest park. IAU Entomological Research Journal, 9, 309-319.
7. Avci, M. & Sarikaya, O. (2009) Orthotomicus tridentatus Eggers: distribution and biology in cedar forests of Turkey. Turkish Journal of Agriculture and Forestry, 33, 277-283.‏ [DOI:10.3906/tar-0901-6]
8. Bassett, M.A., Baumgartner, J.B., Hallett, M.L., Hassan, Y. & Symonds, M.R. (2011) Effects of humidity on the response of the bark beetle Ips grandicollis (Eichhoff) (Coleoptera: Curculionidae: Scolytinae) to synthetic aggregation pheromone. Australian Journal of Entomology, 50, 48-51. [DOI:10.1111/j.1440-6055.2010.00780.x]
9. Barry, S. & Elith, J. (2006) Error and uncertainty in habitat models. Journal of Applied Ecology, 43, 413-423.‏ [DOI:10.1111/j.1365-2664.2006.01136.x]
10. Beaumont, L.J., Gallagher, R.V., Thuiller, W., Downey, P.O., Leishman, M.R. & Hughes, L. (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 15, 409-420. [DOI:10.1111/j.1472-4642.2008.00547.x]
11. Bentz, B.J. & Mullins, D.E. (1999). Ecology of mountain pine beetle cold hardening in the Intermountain West. Environmental Entomology, 28, 577-587. [DOI:10.1093/ee/28.4.577]
12. Bentz, B.J., Logan, J.A. & Amman, G.D. (1991) Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. Canadian Entomologist, 123, 1083-1094. [DOI:10.4039/Ent1231083-5]
13. Bentz, B.J., Regniere, J., Fettig, C.J., Hansen, E.M., Hayes, J.L., Hicke, J.A., Kelsey, R.G. Negron, J.F. & Seybold, S.J. (2010) Climate change and bark beetles of the Western United States and Canada: direct and indirect effects. BioScience, 60, 602-613. [DOI:10.1525/bio.2010.60.8.6]
14. Berg, E.E., Henry, J.D., Fastie, C.L., De Volder, A.D. & Matsuoka, S.M. (2006) Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecology and Management, 227, 219-232. [DOI:10.1016/j.foreco.2006.02.038]
15. Brockerhoff, E.G., Kimberley, M., Liebhold, A.M., Haack, R.A. & Cavey, J.F. (2013) Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology, 95, 594-601. [DOI:10.1890/13-0465.1]
16. Cebeci, H.H. & Baydemir, M. (2018) Predators of bark beetles (Coleoptera) in the Balikesir region of Turkey. Revista Colombiana de Entomologia, 44, 283-287. [DOI:10.25100/socolen.v44i2.7326]
17. Cerrato, C., Lai, V., Balletto, E. & Bonellil, S. (2016) Direct and indirect effects of weather variability in a specialist butterfly. Ecological Entomology, 41, 263-275. [DOI:10.1111/een.12296]
18. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. [DOI:10.1111/j.2006.0906-7590.04596.x]
19. Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. [DOI:10.1111/j.1472-4642.2010.00725.x]
20. ESRI (2013) ARCMAP. ArcGIS. 10.2. Environmental Systems Research Institute, Redlands, California.
21. Evangelista, P.H., Kumar, S., Stohlgren, T.J. & Young, N.E. (2011) Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 262, 307-316.‏ [DOI:10.1016/j.foreco.2011.03.036]
22. Faccoli, M., Gallego, D., Branco, M., Brockerhoff, E.G., Corley, J., Coyle, D.R., Hurley, B.P., Jactel, H., Lakatos, F., Lantschner, V., Lawson, S., Martinez, G., Gomez, D.F. & Avtzis, D. (2020) A first worldwide multispecies survey of invasive Mediterranean pine bark beetles (Coleoptera: Curculionidae, Scolytinae). Biological Invasions, 22, 1785-1799.‏ [DOI:10.1007/s10530-020-02219-3]
23. Farsani, N.S., Zamani, A.A. & Jamali, S. (2018) Predicting distribution pattern of the Mediterranean pine engraver, Orthotomicus erosus (Coleoptera: Curculionidae: Scolytinae), by geostatistics and artificial neural network. Journal of Entomological Society of Iran, 38, 331-343.‏
24. Fettig, C.J., Klepzig, K.D., Billings, R.F., Munson, A.S., Nebeker, T.E., Negron, J.F. & Nowak, J.T. (2007) The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. Forest Ecology and Management, 238, 24-53.‏ [DOI:10.1016/j.foreco.2006.10.011]
25. Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. [DOI:10.1002/joc.5086]
26. Gan, J.B. (2004) Risk and damage of southern pine beetle outbreaks under global climate change. Forest Ecology and Management, 191, 61-71. [DOI:10.1016/j.foreco.2003.11.001]
27. Gomez, D.F., Skelton, J., Maria, M.D. & Hulcr, J. (2020) Influence of temperature and precipitation anomaly on the seasonal emergence of invasive bark beetles in subtropical South America. Neotropical Entomology, 49, 347-352. [DOI:10.1007/s13744-019-00760-y]
28. Google Inc. (2022) Google Earth (Version 7.1.1.1871). Retrieved from http://www.google.com/earth/index.html [Accessed at 15th April 2023].
29. Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.‏ [DOI:10.1111/j.1461-0248.2005.00792.x]
30. Haack, R.A. (2004) Orthotomicus erosus: A new pine-infesting bark beetle in the United States. Newsletter of the Michigan Entomological Society, 49, 3.
31. Henin, J.M. & Paiva, M.R. (2004) Interactions between Orthotomicus erosus (Woll.) (Col., Scolytidae) and the Argentine ant Linepithema humile (Mayr) (Hym., Formicidae). Journal of Pest Science, 77, 113-117. [DOI:10.1007/s10340-003-0045-y]
32. Hernandez, P.A., Graham, C.H., Master, L.L. & Albert, D.L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785. [DOI:10.1111/j.0906-7590.2006.04700.x]
33. Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 1-10. [DOI:10.1111/j.1365-2486.2006.01256.x]
34. Hulme, P. (2017) Climate change and biological invasions: evidence, expectations, and response options. Biological Reviews, 92, 1297-1313. [DOI:10.1111/brv.12282]
35. Jalaeian, M., Golizadeh, A., Sarafrazi, A. & Naimi, B. (2018) Inferring climatic controls of rice stem borers' spatial distributions using maximum entropy modelling. Journal of Applied Entomology, 142, 388-396. [DOI:10.1111/jen.12493]
36. Jiang, Y.P., Huang, Z. Y. & Huang, X.C. (1992) Studies on Orthotomicus erosus. Journal of Zhejiang Normal University (Natural Sciences), 15, 79-81.
37. Jimenez-Valverde, A., Lobo, J.M. & Hortal, J. (2008) Not as good as they seem: The importance of concepts in species distribution modelling. Diversity and Distributions, 14, 885-890. [DOI:10.1111/j.1472-4642.2008.00496.x]
38. Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schroder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H. & Wilting, A. (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19, 1366-1379. [DOI:10.1111/ddi.12096]
39. Kuhnholz, S., Borden, J.H. & Uzunovic, A. (2001) Secondary ambrosia beetles in apparently healthy trees: Adaptations, potential causes and suggested research. Integrated Pest Management Reviews, 6, 209-219. [DOI:10.1023/A:1025702930580]
40. Kumar, S., Neven, L.G., Zhu, H. & Zhang, R. (2015) Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. Journal of Economic Entomology, 108, 1708-1719. [DOI:10.1093/jee/tov166]
41. Lantschner, M.V., Atkinson, T.H., Corley, J. C. & Liebhold, A.M. (2017) Predicting North American Scolytinae invasions in the Southern Hemisphere. Ecological Applications, 27, 66-77.‏ [DOI:10.1002/eap.1451]
42. Lee, J.C., Smith, S.L. & Seybold, S.J. (2005) The Mediterranean pine engraver, Orthotomicus erosus. Pest Alert R5-PR-016. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 4 p.
43. Lee, J.C., Flint, M.L. & Seybold, S.J. (2008) Suitability of pines and other conifers as hosts for the invasive Mediterranean pine engraver (Coleoptera: Scolytidae) in North America. Journal of Economic Entomology, 101, 829-837. [DOI:10.1093/jee/101.3.829]
44. Li, Y., Johnson, A.J., Gao, L., Wu, C. & Hulcr, J. (2021) Two new invasive Ips bark beetles (Coleoptera: Curculionidae) in mainland China and their potential distribution in Asia. Pest Management Science, 77, 4000-4008.‏ [DOI:10.1002/ps.6423]
45. Liebhold, A.M. & Tobin, P.C. (2008) Population ecology of insect invasions and their management. Annual Review of Entomology, 53, 387-408. [DOI:10.1146/annurev.ento.52.110405.091401]
46. Lissovsky, A.A. & Dudov, S.V. (2021) Species-distribution modeling: advantages and limitations of its application. 2. MaxEnt. Biology Bulletin Reviews, 11, 265-275. [DOI:10.1134/S2079086421030087]
47. Logan, J.A. & Powell, J.A. (2001) Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist, 47, 160-173.‏ [DOI:10.1093/ae/47.3.160]
48. Mao, M., Chen, S., Ke, Z., Qian, Z. & Xu, Y. (2022) Using MaxEnt to predict the potential distribution of the little fire ant (Wasmannia auropunctata) in China. Insects, 13, 1008. [DOI:10.3390/insects13111008]
49. Marini, L., Ayres, M.P., Battisti, A. & Faccoli, M. (2012) Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 115, 327-341.‏ [DOI:10.1007/s10584-012-0463-z]
50. Marquardt, D.W. (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12, 591-612. [DOI:10.2307/1267205]
51. McCambridge, W.F. (1971) Temperature limits of flight of the mountain pine beetle, Dendroctonus ponderosae. Annals of the Entomological Society of America, 64, 534-535. [DOI:10.1093/aesa/64.2.534]
52. Mendel, Z. (1983) Seasonal history of Orthotomicus erosus (Coleoptera: Scolytidae) in Israel. Phytoparasitica, 11, 13-24. [DOI:10.1007/BF02980707]
53. Mendel, Z. & Halperin, J. (1982) The biology and behavior of Orthotomivus erusus in Israel. Phytoparasitica, 10, 169-181. [DOI:10.1007/BF02994526]
54. Mendel, Z., Boneh, O., Shenhar, Y. & Riov, J. (1991) Diurnal flight patterns of Orthotomicus erosus and Pityogenes calcaratus in Israel. Phytoparasitica, 19, 23-31. [DOI:10.1007/BF02981008]
55. Mendoza, M.G., Salinas-Moreno, Y., Olivo-Martinez, A. & Zuniga, G. (2011) Factors influencing the geographical distribution of Dendroctonus rhizophagus (Coleoptera: Curculionidae: Scolytinae) in the Sierra Madre Occidental, Mexico. Environmental Entomology, 40, 549-559.‏ [DOI:10.1603/EN10059]
56. Naimi, B. (2014) usdm: Uncertainty analysis for species distribution models, R Software Package.
57. Naimi, B. & Araujo, M.B. (2016) A reproducible and extensible R platform for species distribution modelling. Ecography, 39, 368-375. [DOI:10.1111/ecog.01881]
58. Newbold, T., Reader, T., Zalat, S. & El-Gabbas, A. (2009) Effect of characteristics of butterfly species on the accuracy of distribution models in an arid environment. Biodiversity and Conservation, 18, 3629-3641. [DOI:10.1007/s10531-009-9668-5]
59. Ning, H., Tang, M. & Chen, H. (2021) Mapping invasion potential of the pest from Central Asia, Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae), in the shelter forests of Northwest China. Insects, 12, 242. [DOI:10.3390/insects12030242]
60. Okland, B., Flo, D., Schroeder, M., Zach, P., Cocos, D., Martikainen, P., Siitonen, J., Mandelshtam, M.Y., Musolin, D.L., Neuvonen, S., Vakula, J., Nikolov, C., Lindelow, A. & Voolma, K. (2019) Range expansion of the small spruce bark beetle Ips amitinus: a newcomer in northern Europe. Agricultural and Forest Entomology, 21, 286-298.‏ [DOI:10.1111/afe.12331]
61. Ozcan, G.E., Cicek, O., Enez, K. & Yildiz, M. (2014) A new approach to determine the capture conditions of bark beetles in pheromone-baited traps. Biotechnology and Biotechnological Equipment, 2, 1057-1064. [DOI:10.1080/13102818.2014.974015]
62. Pearce, J. & Ferrie, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225-245. [DOI:10.1016/S0304-3800(00)00322-7]
63. Pernek, M., Lackovic, N., Lukic, I., Zoric, N. & Matosevic, D. (2019) Outbreak of Orthotomicus erosus (Coleoptera, Curculionidae) on Aleppo pine in the Mediterranean region in Croatia. South-East European forestry (SEEFOR), 10, 19-27.‏ [DOI:10.15177/seefor.19-05]
64. Phillips, S.J. & Dudik, M. (2008) Modelling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31, 161-175. [DOI:10.1111/j.0906-7590.2008.5203.x]
65. Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. [DOI:10.1016/j.ecolmodel.2005.03.026]
66. Phillips, S.J., Dudik, M. & Schapire, R.E. (2023) MaxEnt software for modeling species niches and distributions (Version 3.4.1). Available from http://biodiversityinformatics.amnh.org/open_source/maxent [Accessed at 15th May, 2023]
67. Qin, Y.J., Wang, C., Zhao, Z.H., Pan, X.B. & Li, Z.H. (2019) Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Climatic Change, 155, 145-156. [DOI:10.1007/s10584-019-02460-3]
68. Rabaglia, R.J., Duerr, D., Acciavatti, R. & Ragenovich, I. (2008) Early detection and rapid response for non-native bark and Ambrosia beetles. USDA Forest Service, Forest Health Protection, Washington DC, USA. 12 p.
69. Rassati, D., Faccoli, M., Toffolo, E.R., Battisti, A. & Marini, L. (2015) Improving the early detection of alien wood-boring beetles in ports and surrounding forests. Journal of Applied Ecology, 52, 50-58. [DOI:10.1111/1365-2664.12347]
70. Salehi-Jouzani, G., Farazmand, H., Saadat, D., Golmohamadi, G. & Amirian, R. (2016) Study on distribution, biology, prevention strategies and control of Mediterranean pine bark beetle, Orthotomicus erosus (Wollaston), in Isfahan.‏ In: Talaei-Hassanloui, R. (ed) Proceedings of the 22nd Iranian Plant Protection Congress, 27-30 August 2016, University of Tehran, Karaj, p. 648.
71. Sanchez-Garcia, F.J., Galian, J. & Gallego, D. (2015) Distribution of Tomicus destruens (Coleoptera: Scolytinae) mitochondrial lineages: phylogeographic insights and niche modelling. Organisms Diversity and Evolution, 15, 101-113.‏ [DOI:10.1007/s13127-014-0186-2]
72. Sarikaya, O., Ibis, H.M. & Toprak, O. (2013) The flight activity and population density of Orthotomicus erosus (Wollaston, 1857) in the Brutian pine (Pinus brutia Ten.) forests of Izmir Province, Turkey. International Journal of Sciences: Basic and Applied Research, 12, 208-219.
73. Sarikaya, O., Karaceylan, I.B. & Sen, I. (2018) Maximum entropy modeling (MaxEnt) of current and future distributions of Ips mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey.‏ Applied Ecology and Environmental Research, 16, 2527-2535. [DOI:10.15666/aeer/1603_25272535]
74. Skendzic, S., Zovko, M., Zivkovic, I.P., Lesic, V. & Lemic, D. (2021) The impact of climate change on agricultural insect pests. Insects, 12, 440.‏ [DOI:10.3390/insects12050440]
75. Taylor, S.W., Carroll, A.L., Alfaro, R.I. & Safranyik, L. (2006) Forest, climate and mountain pine beetle outbreak dynamics in western Canada. In: Safranyik, L. & Wilson, B. (eds) The Mountain Pine Beetle: A Synthesis of Biology, Management and Impacts in Lodgepole Pine. Natural Resources Canada, Canadian Forest Service, Victoria, British Columbia, pp. 67-94.
76. Tognelli, M.F., Roig-Junent, S.A., Marvaldi, A.E., Flores, G.E. & Lobo, J.M. (2009) An evaluation of methods for modelling distribution of Patagonian insects. Revista Chilena de Historia Natural, 82, 347-360. [DOI:10.4067/S0716-078X2009000300003]
77. Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. & Kadmon, R. (2007) A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions, 13, 397-405. [DOI:10.1111/j.1472-4642.2007.00346.x]
78. Ungerer, M., Ayres, M. & Lombardero, M. (1999) Climate and the northern distribution limits of Dendroctonus frontalis Zimmerman (Coleoptera: Scolytidae). Journal of Biogeography, 26, 1133-1145. [DOI:10.1046/j.1365-2699.1999.00363.x]
79. Urvois, T., Auger-Rozenberg, M.A., Roques, A., Rossi, J.P. & Kerdelhue, C. (2021) Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles. Scientific Reports, 11, 1339. [DOI:10.1038/s41598-020-80157-9]
80. Witkowski, R., Dyderski, M.K., Belka, M. & Mazur, A. (2022) Potential European geographical distribution of Gnathotrichus materiarius (Fitch, 1858) (Coleoptera: Scolytinae) under current and future climate conditions. Forests, 13, 1097.‏ [DOI:10.3390/f13071097]
81. Yu, Y., Chi, Z., Zhang, J., Sun, P., Wang, C. & Pan, X. (2019) Assessing the invasive risk of bark beetles (Curculionidae: Scolytinae and Platypodinae). Annals of the Entomological Society of America, 112, 451-457. [DOI:10.1093/aesa/saz030]
82. Zabihi, K., Huettmann, F. & Young, B.D. (2021) Predicting multi-species bark beetle (Coleoptera: Curculionidae: Scolytinae) occurrence in Alaska: open-access big GIS-data mining to provide robust inference. Biodiversity Informatics, 16, 1-19. [DOI:10.17161/bi.v16i1.14758]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.