Volume 10, Issue 3 (2024)                   J. Insect Biodivers. Syst 2024, 10(3): 557-569 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Pasandideh Saqalaksari M, Talebi A A, Van de Kamp T, Reyhani Haghighi S, Zimmermann D, Richter A. EntomonVR: A new virtual reality game for learning insect morphology. J. Insect Biodivers. Syst 2024; 10 (3) :557-569
URL: http://jibs.modares.ac.ir/article-36-71158-en.html
1- Department of Agricultural Entomology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box: 14115-336, Tehran, Iran
2- Department of Agricultural Entomology, Faculty of Agriculture, Tarbiat Modares University, P.O. Box: 14115-336, Tehran, Iran , talebia@modares.ac.ir
3- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Germany; Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
4- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, 31587-77871 Karaj, Iran
5- Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010, Vienna, Austria
6- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, 07743, Jena, Germany
Abstract:   (1585 Views)
The study of insect morphology has recently benefited greatly from the emergence of new digital imaging and analysis technologies such as X-ray Micro-computed tomography (μ-CT), digital 3D reconstruction, and animation. Through interactive gaming and virtual reality, the external morphology of insects can be studied by a broad audience of both entomologists and non-specialists. EntomonVR is a serious game designed to investigate the external morphology of insects with adequate quality for the virtual reality platform. In this research, we discuss the advantages of virtual reality, introduce the EntomonVR new educational game, and conclude about future perspectives, validations, and cost-effectiveness. We tested this game on 25 participants with an entomological background for assessment and improved it based on their feedback. This study demonstrates the efficacy of virtual reality technology for an experimental learning environment in teaching the morphology of insects and the crucial need for advancing an efficient and interactive educational program.
Full-Text [PDF 3407 kb]   (944 Downloads)    

Article Type: Research Article | Subject: Biodiversity
Received: 2023/08/19 | Accepted: 2024/05/1 | Published: 2024/07/3

References
1. Adobe Photoshop software (2018) Available from: https://www.adobe.com/products/photoshop.html [Assessed 20 Fenraury, 2023]
2. Amira Software (2016) Available from https://www.thermofisher.com [Assessed 20th Febraury 2023]
3. Bergmann, T., Balzer, M., Hopp, T., van De Kamp, T., Kopmann, A., Jerome, N.T. & Zapf, M. (2017) Inspiration from VR gaming technology: Deep immersion and realistic interaction for scientific visualization. Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. February 27 - March 1, 2017, Porto, Portugal, SciTePress, p. 330-334. [DOI:10.5220/0006262903300334]
4. Beutel, R.G. & Leschen, A.B. (2016) Handbook of Zoology: Arthropoda: Insecta. Coleoptera, Beetles, vol 1. (2nd ed.). De Gruyter Press. Berlin, Germany. 684 p.
5. Blender3D software (2018) Available from: https://www.blender.org/download/releases/2-80. [Assessed 20th February 2023]
6. Bogomolova, K., Sam, A.H., Misky, A.T., Gupte, C.M., Strutton, P.H., Hurkxkens, T.J. & Hierck, B.P. (2021) Development of a virtual three‐dimensional assessment scenario for anatomical education. Anatomical Sciences Education, 14 (3), 385-393.‏ [DOI:10.1002/ase.2055]
7. Bolton, B. (1994) Identification Guide to the Ant Genera of the World. Harvard University Press, Cambridge. 222 p.
8. Brenton, H., Hernandez, J., Bello, F., Strutton, P., Purkayastha, S., Firth, T. & Darzi, A. (2007) Using multimedia and Web3D to enhance anatomy teaching. Computers & Education, 49 (1), 32-53.‏ [DOI:10.1016/j.compedu.2005.06.005]
9. Calvelo, M., Piñeiro, Á. & Garcia-Fandino, R. (2020) An immersive journey to the molecular structure of SARS-CoV-2: Virtual reality in COVID-19. Computational and structural biotechnology journal, 18, 2621-2628.‏ [DOI:10.1016/j.csbj.2020.09.018]
10. Campo, P. & Dangles, O. (2020) An overview of games for entomological literacy in support of sustainable development. Current Opinion in Insect Science, 40, 104-110.‏ [DOI:10.1016/j.cois.2020.05.018]
11. Cao, C. & Cerfolio, R. J. (2019) Virtual or augmented reality to enhance surgical education and surgical planning. Thoracic Surgery Clinics, 29 (3), 329-337.‏ [DOI:10.1016/j.thorsurg.2019.03.010]
12. Cassidy, K.C., Šefčík, J., Raghav, Y., Chang, A. & Durrant, J.D. (2020) ProteinVR: Web-based molecular visualization in virtual reality. PLoS Computational Biology, 16 (3), e1007747. [DOI:10.1371/journal.pcbi.1007747]
13. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F. & Ranzuglia, G. (2008) MeshLab: An open-source mesh processing tool. In: Scarano, V., Rosario De Chiara, R. & Erra, U. (eds.) Eurographics Italian Chapter Conference. July 2-4, 2008, The Eurographics Association, Salerno, Italy, p. 129-136.
14. Cui, D., Wilson, T.D., Rockhold, R.W., Lehman, M.N. & Lynch, J.C. (2017) Evaluation of the effectiveness of 3D vascular stereoscopic models in anatomy instruction for first-year medical students. Anatomical Sciences Education, 10 (1), 34-45.‏ [DOI:10.1002/ase.1626]
15. Dorward, L.J., Mittermeier, J.C., Sandbrook, C. & Spooner, F. (2017) Pokémon Go: Benefits, costs, and lessons for the conservation movement. Conservation Letters, 10 (1), 160-165.‏ [DOI:10.1111/conl.12326]
16. Faulwetter, S., Vasileiadou, A., Kouratoras, M., Dailianis, T. & Arvanitidis, C. (2013) Micro-computed tomography: Introducing new dimensions to taxonomy. ZooKeys, 263, 1-45. [DOI:10.3897/zookeys.263.4261]
17. Ferrell, J.B., Campbell, J.P., McCarthy, D.R., McKay, K.T., Hensinger, M., Srinivasan, R., Zhao, X. & Schneebeli, S. T. (2019) Chemical exploration with virtual reality in organic teaching laboratories. Journal of Chemical Education, 96 (9), 1961-1966.‏ [DOI:10.1021/acs.jchemed.9b00036]
18. Gontard, L.C., Schierholz, R., Yu, S., Cintas, J. & Dunin-Borkowski, R.E. (2016) Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software. Ultramicroscopy, 169, 80-88.‏ [DOI:10.1016/j.ultramic.2016.07.006]
19. Greco, M., Jones, A., Spooner-Hart, R. & Holford, P. (2008) X-ray computerised microtomography (MicroCT): a new technique for assessing external and internal morphology of bees. Journal of Apicultural Research, 47 (4), 286-291.‏ [DOI:10.1080/00218839.2008.11101476]
20. Gutiérrez‐Heredia, L., D'Helft, C. & Reynaud, E.G. (2015) Simple methods for interactive 3D modeling, measurements, and digital databases of coral skeletons. Limnology and Oceanography: Methods, 13 (4), 178-193.‏ [DOI:10.1002/lom3.10017]
21. Hamrol, A., Górski, F., Grajewski, D. & Zawadzki, P. (2013) Virtual 3D atlas of a human body - Development of an educational medical software application. Procedia Computer Science, 25, 302-314. [DOI:10.1016/j.procs.2013.11.036]
22. Garcia, F.H., Fischer, G., Liu, C., Audisio, T.L. & Economo, E.P. (2017) Next-generation morphological character discovery and evaluation: an X-ray micro-CT enhanced revision of the ant genus Zasphinctus Wheeler (Hymenoptera, Formicidae, Dorylinae) in the Afrotropics. ZooKeys, 693, 33-93. [DOI:10.3897/zookeys.693.13012]
23. Ijiri, T., Todo, H., Hirabayashi, A., Kohiyama, K. & Dobashi, Y. (2018) Digitization of natural objects with micro CT and photographs. Plos One, 13 (4), e0195852.‏ [DOI:10.1371/journal.pone.0195852]
24. Jensen, L. & Konradsen, F. (2018) A review of the use of virtual reality head-mounted displays in education and training. Education and Information Technologies, 23 (4), 1515-1529.‏ [DOI:10.1007/s10639-017-9676-0]
25. Johnston, A.P., Rae, J., Ariotti, N., Bailey, B., Lilja, A., Webb, R., McGhee, J. & Parton, R.G. (2018) Journey to the centre of the cell: Virtual reality immersion into scientific data. Traffic, 19 (2), 105-110. [DOI:10.1111/tra.12538]
26. Leonard, W.H. & Penick, J.E. (2000) The Limits of Learning. The American Biology Teacher, 62 (5), 359-361.‏ [DOI:10.2307/4450919]
27. Lösel, P.D., van de Kamp, T., Jayme, A., Ershov, A., Faragó, T., Pichler, O. & Heuveline, V. (2020) Introducing Biomedisa as an open-source online platform for biomedical image segmentation. Nature Communications, 11, 5577. [DOI:10.1038/s41467-020-19303-w]
28. Low, K.L. & Tan, T.S. (1997) Model simplification using vertex-clustering. Proceedings of the 1997 symposium on Interactive 3D graphics. April 27-30, 1997. Association for Computing Machinery, New York, United States, p. 75-81.‏ [DOI:10.1145/253284.253310]
29. Matsuda, R. (1970) Morphology and evolution of the insect thorax. The Memoirs of the Entomological Society of Canada, 102(S76), 5-431.‏ [DOI:10.4039/entm10276fv]
30. Molina-Carmona, R., Pertegal-Felices, M. L., Jimeno-Morenilla, A. & Mora-Mora, H. (2018) Virtual reality learning activities for multimedia students to enhance spatial ability. Sustainability, 10 (4), 1074. [DOI:10.3390/su10041074]
31. Pasandideh Saqalaksari, M. & Talebi, A.A. (2018) Iranian Braconidae. Available from: https://cyberbraconid. myspecies.info [Accessed 26th April 2023]
32. Pasandideh Saqalaksari, M., Talebi, A.A. & van de Kamp, T. (2020) MicroCT 3D reconstruction of three described braconid species (Hymenoptera: Braconidae). Journal of Insect Biodiversity and Systematics, 6 (4), 331-342.‏ [DOI:10.52547/jibs.6.4.331]
33. Piovesan, S.D., Passerino, L.M. & Pereira, A.S. (2012) Virtual Reality as a Tool in the Education. International Conference on Cognition and Exploratory Learning in Digital Age (CELDA). October 19-21, 2012, International Association for Development of the Information Society (IADIS), Madrid, Spain, p. 295-298.
34. Plass, J.L., Homer, B.D. & Kinzer, C.K. (2015) Foundations of game-based learning. Educational psychologist, 50 (4), 258-283.‏ [DOI:10.1080/00461520.2015.1122533]
35. Qian, J., Lei, M., Dan, D., Yao, B., Zhou, X., Yang, Y., Yan, S., Min, J. & Yu, X. (2015) Full-color structured illumination optical sectioning microscopy. Scientific Reports, 5 (1), 1-10.‏ [DOI:10.1038/srep14513]
36. Richter, A., Garcia, F.H., Keller, R.A., Billen, J., Economo, E.P. & Beutel, R.G. (2020) Comparative analysis of worker head anatomy of Formica and Brachyponera (Hymenoptera: Formicidae). Arthropod Systematics and Phylogeny, 78 (1), 133-170.‏
37. Nguyen, C.V., Lovell, D.R., Adcock, M. & La Salle, J. (2014) Capturing natural-colour 3D models of insects for species discovery and diagnostics. PloS One, 9 (4), e94346.‏ [DOI:10.1371/journal.pone.0094346]
38. Sarnat, E.M., Garcia, F.H., Dudley, K., Liu, C., Fischer, G. & Economo, E.P. (2019) Ready species one: exploring the use of augmented reality to enhance systematic biology with a revision of Fijian Strumigenys (Hymenoptera: Formicidae). Insect Systematics and Diversity, 3 (6), 6.‏ [DOI:10.1093/isd/ixz005]
39. Snodgrass, R.E. (1939) The Principles of Insect Physiology. Methuen and Company, Ltd. London. 434 p.
40. Sosa, G.D., Rodríguez, S., Guaje, J., Victorino, J., Mejía, M., Fuentes, L.S., Ramirez, A. & Franco, H. (2016) 3D surface reconstruction of entomological specimens from uniform multi-view image datasets. In: Altuve, M. (ed.) XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA). August 31-September 2, 2016, Universidad Pontificia Bolivariana, Bucaramanga, Colombia, IEEE, pp. 1-8.‏ [DOI:10.1109/STSIVA.2016.7743319]
41. Ströbel, B., Schmelzle, S., Blüthgen, N. & Heethoff, M. (2018) An automated device for the digitization and 3D modelling of insects, combining extended-depth-of-field and all-side multi-view imaging. ZooKeys, 759, 1-27. [DOI:10.3897/zookeys.759.24584]
42. Taylor, G. J., Hall, S. A., Gren, J. A. & Baird, E. (2020) Exploring the visual world of fossilized and modern fungus gnat eyes (Diptera: Keroplatidae) with X-ray microtomography. Journal of the Royal Society Interface, 17 (163), 20190750.‏ [DOI:10.1098/rsif.2019.0750]
43. Unity Software (2018) Available from: https://unity.com [Assessed 20th Fenraury 2023]
44. van de Kamp, T., Schwermann, A.H., dos Santos Rolo, T., Lösel, P.D., Engler, T., Etter, W. & Krogmann, L. (2018) Parasitoid biology preserved in mineralized fossils. Nature Communications, 9, 3325, 1-14. [DOI:10.1038/s41467-018-05654-y]
45. Yoder, M.J., Mikó, I., Seltmann, K.C., Bertone, M.A. & Deans, A.R. (2010) A gross anatomy ontology for Hymenoptera. PloS one, 5 (12), e15991.‏ [DOI:10.1371/journal.pone.0015991]
46. Zilverschoon, M., Vincken, K.L. & Bleys, R.L. (2017) The virtual dissecting room: Creating highly detailed anatomy models for educational purposes. Journal of Biomedical Informatics, 65, 58-75. [DOI:10.1016/j.jbi.2016.11.005]
47. Zimmermann, D. & Vilhelmsen, L. (2016) The sister group of Aculeata (Hymenoptera)-evidence from internal head anatomy, with emphasis on the tentorium. Arthropod Systematics and Phylogeny, 74 (2), 195-218. [DOI:10.3897/asp.74.e31852]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.