A preliminary list of *Andrena* subgenera (Hymenoptera: Andrenidae) of Iran, with five new records

Safoora Allahverdi\(^1\), Ahmad Nadimi\(^1\), Ali Afshari\(^1\) and Khalid Aliyev\(^2\)

\(^1\) Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
\(^2\) Institute of Zoology, National Academy of Sciences of Azerbaijan, Passaj 1128, block 504, Baku, Azerbaijan

ABSTRACT. The list of 41 subgenera of the genus *Andrena* Fabricius, 1775 from Iran is given. The list provided here is based on a detailed study of all available published data and current study. Four subgenera and five species are recorded for the first time from Iran, including *Andrena* (*Cnemidandrena* fuscipes) (Kirby, 1802), *Andrena* (*Lepidandrena* curvungula) (Thomson, 1870), *Andrena* (*Lepidandrena* pandellei) (Pérez, 1895), *Andrena* (*Parandrena* sericata) (Imhoff, 1868) and *Andrena* (*Platygalandrena* tecta) (Radoszkowski, 1876). Ecological notes on the newly recorded species are briefly discussed.

Key words: *Andrena*, Apoidea, Iran, Sand bees

Citation: Allahverdi, S., Nadimi, A., Afshari, A. and Aliyev, K. 2015. A preliminary list of *Andrena* subgenera (Hymenoptera: Andrenidae) of Iran, with five new records. *Journal of Insect Biodiversity and Systematics*, 1(1): 61–75.

Introduction

The Andrenidae is one of the largest families of bees, widely distributed (excluding Australia) and with greatest diversity in arid western North America, South America, and the Palearctic region (Danforth et al. 2013). It belongs together with the Halictidae, Colletidae, Melittidae and Stenotritidae to the short-tongued bees, which are characterized generally by labial palpi with four similar segments (Michener 2007). The Andrenidae is a challenging group from the prospective of the classification and phylogeny (Danforth et al. 2013; Michener 2007). Andrenidae consists of three subfamilies (Andreninae, Panurginae, and Ozaeinae) and eight tribes (Danforth et al. 2013). The subfamily Andreniniae was divided into two tribes, the Andrenini and Euherbstiini, the latter is found only in Chile (Danforth et al. 2013; Michener 2007). Ascher and Pickering (2015) divided the tribe Andrenini into four genera, including *Alocandrena* Michener, 1986, *Ancylandrena* Cockerell, 1930, *Megandrena* Cockerell, 1927, and *Andrena* Fabricius, 1775. Among the genera, only genus *Andrena* has a Holarctic distribution and is abundant in the temperate regions of the Northern continents of both hemispheres (Michener 2007; Dubitzky et al. 2010). They are among the important pollinators of natural vegetation and crop plants (Osytshnjuk et al. 2005). For *Andrena* genus, there are 101 (17 Holarctic, 32 Nearctic, 1 Oriental and 51 Palearctic)
and 37 subgenera in the world and Iran, respectively (Dubitzky et al. 2010; Ascher and Pickering 2015). Among the all Iranian bees, little information is available on the fauna, taxonomy and the geographic distribution of Andrenidae, particularly genus *Andrena* and many records are restricted to the old literature.

Before 1974, there were some faunistic or taxonomic works by non-native researchers that have considered elements of the Iranian bee fauna including the genus *Andrena*. Notable examples of taxonomic works supplied material of genus *Andrena* from Iran before 1974 are those by Morice (1921, seven species), Strand (1921, one species), Alfken (1927, two species), Alfken (1935, 15 species), Alfken and Blüthgen (1937, three species), Popov (1940, 1949, 1958, 1967, 3, 4, 4 and 23 species, respectively). Esmaili and Rastegar (1974), as the first native researcher, found three species of the genus *Andrena* belonging to three different subgenera during a survey on Aculeata of Iran. Afterward, there was generally a 20 year gap on studying bees of Iran. Telebi *et al.* (1995) reported 33 bees visiting alfalfa flowers in Karadj County, including two species of different subgenera of *Andrena*. Tavakoli *et al.* (2010) collected three different subgenera on flowers of legume crops from Guilan province. In addition, there are some important published taxonomic studies on the genus *Andrena* in Iran (Ariana *et al.*, 2009a; Ariana *et al.*, 2009b). The most important faunistic work of bees, including the genus *Andrena* in recent years is presented by Khodaparast and Monfared (2012). They introduced 31 species of nineteen subgenera in studied areas in south of Iran (Fars province). Ascher and Pickering (2015) totally listed about 125 Iranian andrenid species belonging to 37 subgenera in "Discover Life's bee species guide and world checklist". Herein we attempt to provide a list of the formerly and currently recorded subgenera of *Andrena* known to occur in Iran. This study was prompted by the absence of a comprehensive work on this important genus in Iran.

Materials and Methods

Information sources are based both from literatures and collecting bees from different localities in Gorgan County, Golestan Province (Iran), in 2014 using sweeping nets. Information for each specimen caught, such as location and altitude of the collection site, were recorded with a GPS device (Garmin GPS map 62s). Bees were killed in jars containing ethyl acetate. Bees were later pinned, prepared according to the standard methods and stored until their identification to species level. For studying male genitalia, we brought it out with a fine forceps, while sticking to end of abdomen. Specimens were examined under a binocular microscope by using valid related sources (Gusenleitner and Schwarz, 2002; Osytshnjuk, *et al.* 2005; Michener 2007). The morphological terminology used in the descriptions follows Osytshnjuk *et al.* 2005. The photographs were taken using an Olympus SZ stereo-microscope equipped with a Sony digital camera. All specimens are deposited in collection woody boxes in entomology laboratory of Gorgan University of Agricultural Sciences and Natural Resources. The vegetation cover of this area consists mainly of broad-leaved trees, bushes and shrubbery often with Loess soil. All visited flower plants by bees were collected and then identified by help of botanist experts of Golestan Agricultural and Natural Resources Research and Education Center.

Results

Herein we reported four newly subgenera *Cnemidandrena, Lepidandrena, Parandrena* and *Platygalandrena* with five new recorded species for Iranian bee fauna. Subgenera are arranged herein alphabetically within genus *Andrena* (Table 1).
Table 1. List of *Andrena* subgenera (Hymenoptera: Andrenidae) from Iran.

<table>
<thead>
<tr>
<th>Subgenus</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aciandrena</td>
<td>Popov (1967); Alfken (1927); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Aenandrena</td>
<td>Alfken (1927); Ariana et al. (2009a); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Brachyandrena</td>
<td>Popov (1967); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Campylogaster</td>
<td>Khodaparast and Monfared (2012); Alfken (1935); Popov (1967); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Carandrena</td>
<td>Khodaparast and Monfared (2012); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Chlorandrena</td>
<td>Khodaparast and Monfared (2012); Popov (1967); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Cnemidandrena*</td>
<td>Current study.</td>
</tr>
<tr>
<td>Cordandrena</td>
<td>Khodaparast and Monfared (2012); Morice (1921); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Eauandrena</td>
<td>Khodaparast and Monfared (2012); Morice (1921); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Holandrena</td>
<td>Khodaparast and Monfared (2012); Esmaili and Rastegar (1974); Alfken (1935); Popov (1967); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Lepidandrena *</td>
<td>Current study.</td>
</tr>
<tr>
<td>Melanapis</td>
<td>Khodaparast and Monfared (2012); Tavakoli et al. (2010); Popov (1967); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Melandrena</td>
<td>Alfken (1935); Morice (1921); Popov (1967); Strand (1921); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Melitoides</td>
<td>Khodaparast and Monfared (2012); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Micrandrena</td>
<td>Khodaparast and Monfared (2012); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Nobandrena</td>
<td>Khodaparast and Monfared (2012); Popov (1967); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Notandrena</td>
<td>Morice (1921); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Orandrena</td>
<td>Khodaparast and Monfared (2012); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Oxychnyakandrena</td>
<td>Ariana et al. (2009b); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Parandrena *</td>
<td>Current study.</td>
</tr>
<tr>
<td>Parandrenella</td>
<td>Khodaparast and Monfared (2012); Popov (1957,1967);</td>
</tr>
<tr>
<td>Plastandrena</td>
<td>Khodaparast and Monfared (2012); Alfken (1935); Morice (1921). Popov (1967, 1949); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Platygalandrena *</td>
<td>Current study.</td>
</tr>
<tr>
<td>Pociclandrena *</td>
<td>Popov (1967); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Ptilandrena</td>
<td>Khodaparast and Monfared (2012); Morice (1921); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Scitandrena</td>
<td>Popov (1967); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Simandrena</td>
<td>Khodaparast and Monfared (2012); Alfken (1935); Morice (1921); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Suandrena</td>
<td>Khodaparast and Monfared (2012); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Taenianandrena</td>
<td>Khodaparast and Monfared (2012); Tavakoli et al. (2010); Esmaili and Rastegar (1974); Alfken (1935). Popov (1967); Talebi et al. (1995); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Thyandrena</td>
<td>Morice (1921); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Trachandrena</td>
<td>Alfken (1935); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Trunchandrena</td>
<td>Khodaparast and Monfared (2012); Popov (1967); Ascher and Pickering (2015).</td>
</tr>
<tr>
<td>Zonandrena</td>
<td>Khodaparast and Monfared (2012); Tavakoli et al. (2010); Esmaili and Rastegar (1974); Alfken (1935). Morice (1921); Talebi et al. (1995); Ascher and Pickering (2015).</td>
</tr>
</tbody>
</table>

The asterisk beside subgenera indicates new records.
Subgenus Cnemidandrena Hedicke 1933

Diagnosis: Basal area of labrum large, trapezoidal, usually thickened; first flagellar segment in males usually shorter than combined length 2nd and 3rd segments; ocellocipital distance 2 times as wide as ocellar diameter (Fig. 1).

Andrena (Cnemidandrena) fuscipes (Kirby, 1802)

Synonyms: Melitta fuscipes Kirby, 1802; Melitta pubescens homonym Kirby, 1802; Andrena cincta homonym Nylander, 1852; Andrena germanica Verhoeff, 1890 (Ascher and Pickering 2015).

Material examined: Gorgan County, Between Shastkalate and Alofen village (36° 36′ N, 54° 34′ E, 2147 m, a.s.l.), 24.v.2014, 1♀, Floral resources: Lepidium draba L. (Brassicaceae), leg. S. Allahverdi.

General distribution: Azerbaijan, Croatia, Denmark, France, Georgia, Greece, Italy, Kazakhstan, Latvia, Netherlands, Romania, Spain, Slovakia, Sweden, Turkey, Ukraine (Ascher and Pickering 2015).

Diagnosis: Body length 12–13 mm in females (Fig. 7); Facial foveae occupying 2/3 ocellocular distance, extending to level of clypeus base, narrowed (Fig. 8); the last segment of metatarsus with an arched appearance (Fig. 9).

Andrena (Lepidandrena) pandellei Pérez, 1895

Material examined: Gorgan County, Between Shastkalate and Alofen village (36° 41′ N, 54° 20′ E), 17.v.2014, 4♀♀, Floral resources: Lepidium draba L. (Brassicaceae), leg. S. Allahverdi.

General distribution: Algeria, Austria, Bosnia and Herzegovina, Bulgaria, Corsica, Croatia, France, Germany, Greece, Hungary, Italy, Luxembourg, Morocco, Moravia, Netherlands, Poland, Portugal, Romania, Sicily, Slovakia, Turkey, Ukraine (Ascher and Pickering 2015).

Diagnosis: Body length 10–12 mm in females (Fig. 10); Basal area of labrum longer and narrower than A. curvungula; Pubescence of facial foveae brownish-grey; mesoscutum, scutellum and metanotum with brownish-yellow squamous hairs; facial foveae narrower, occupying 1/3 ocellocular distance (Fig. 11); the last segment of metatarsus with a rectilinear appearance (Fig. 12).

Subgenus Parandrena Robertson, 1897

Diagnosis: Genal area narrow; ocelloccipital distance more than one ocellar diameter (in *A. sericata* over 2 times as wide as ocellar diameter) (Fig. 13); the female labrum is transversely sulcate, and the male sixth sternum is reflexed with apicolateral teeth.

Andrena (Parandrena) sericata Imhoff, 1868

Synonym: *Andrena favosa* Morawitz, 1872 (Ascher and Pickering 2015).
Material examined: Gorgan County, Near to Chahar bagh village (36° 36.75' N, 54° 29.96' E, 2127 m, a.s.l), 09.vi.2014, 1♂, Floral resources: Centaurea sp. (Asteraceae); Chahar bagh-Jahannam road (36° 34.095' N, 54° 25.593' E, 2130 m, a.s.l), 24.v.2014 1♀1♂, Floral resources: Ixiolirion tataricum (Pall.) (Ixioliriaceae) and Tragopogon sp. (Asteraceae), leg. S. Allahverdi.

General distribution: Armenia, Austria, Croatia, Czech Republic, France, Georgia, Germany, Greece, Hungary, Italy, Poland, Russia, Romania, Serbia, Slovakia, Spain, Switzerland, Turkey, Ukraine (Ascher and Pickering 2015).

Diagnosis: Body length 12–13 mm in females and 11–12 mm in males (Fig. 14 and 15); clypeus yellow with five black spots in females and with two black spots in males (Fig. 16 and 17); genitalia has distinct dorsal gonoxite which vesicular swollen aedeagus valve is visible on the base (Fig. 18).

Subgenus Platygalandrena Dubitzky, 2006
Diagnosis: Facial fovea flat, weakly depressed (Fig. 19), more than one ocellar diameter; galea strongly punctate and flattened dorsoventrally (Fig. 20).

Andrena (Platygalandrena) tecta Radoszkowski, 1876
Synonym: Andrena (Ulandrena) tecta Radoszkowski, 1876 (Ascher and Pickering 2015).

Material examined: Gorgan County, Near to Chahar bagh village (36° 36.75’ N, 54° 29.96’ E, 2127 m, a.s.l), 24.v.2014, 1♀, Floral resources: Acanthophyllum sp. (Caryophyllaceae), leg. S. Allahverdi.

Diagnosis: Body length 11 mm in females (Fig. 21); ocellocipital distance one and half times as wide as ocellar diameter (Fig. 22); with long and curve light trochanteral flocculus in hind leg (Fig. 23).

Discussion

According to the results of this research, the number of recorded _Andrena_ subgenera of Iran increased to 41 (Table 1).

The subgenus _Cnemidandrena_ with 48 recorded species in the world (Ascher and Pickering 2015), is relatively poorly represented in Eurasia (LaBerge, 1986). A staple food for the oligolectic solitary bee, _Andrena fuscipes_, is the _Calluna_ genus (Ericaceae) (Ruszkowski _et al._ 1999; Dupont and Olesen 2009; Exeler _et al._ 2010; Hodges and Cane 1949; Moroń _et al._ 2008; Gusenleitner 1985) and also is one of the most important pollinators of _Calluna vulgaris_ side by side with the honey bee (Hodges and Cane 1949). We collected _A. fuscipes_ from the yellow flowers of _Paliurus spina-christi_ (Rhamnaceae). At present, heathland habitats are listed as critically endangered in Germany and other parts of Europe and are protected by the EU Habitats Directive and _A. fuscipes_ in Central Europe is specialized on heather pollen (Exeler _et al._ 2010). Although _A. fuscipes_ widely distributed species in Central Europe (Exeler _et al._ 2010) but has become rare and is listed as vulnerable in following countries where red lists for Hymenoptera exist, such as Switzerland (Regionally extinct), Germany (Near Threatened), Slovenia (Endangered), Netherlands (Critically Endangered) (Peeters and Reemers 2003) and threatened and rare in other European countries like Ireland.

The subgenus _Lepidandrena_ with 16 species in the world, restricted to the Palaeartic region (Xu and Cui 2007). According to Data from the Swedish Species Information Centre (ArtDatabanken), _Andrena curvungula_ is oligolectic, specialized on _Campanula_ spp. (Campanulaceae) (Naylor 2006; Lara Ruiz 2012; Zettel _et al._ 2003; Schindwein _et al._ 2005; Monsevičius 2004; Westrich 1996) and also sometimes as pollinator of Malvaceae, Apiaceae, Ranunculaceae (Westrich and Schmidt 1987). Also _A. curvungula_ is a rare species in Central Europe and on the red list of highly threatened in Germany (Feitz _et al._ 2003; Westrich 1996). _Andrena pandellei_ is extremely rare in Germany and Central Europe (Westrich 2000; Flechtner _et al._ 2000) and oligolectic on bellflower (_Campanula_) and _Geranium_ spp. (Geraniaceae) (Naylor 2006; Zettel _et al._ 2002; Gusenleitner 1985; Schindwein _et al._ 2005; Monsevičius 2004; Westrich 1996; Münze _et al._ 2006). Recently, _A. pandellei_ has been used for meadow management and used in the commercial grassland in Germany (Westrich _et al._ 2008). Neumayer (2010) showed that _A. fuscipes, A. curvungula_ and _A. pandellei_ are solitary nesting bee species.

The subgenus _Parandrena_ with 15 species in the world (Ascher and Pickering 2015) is developed from the subgenus _Opandrena_ (Robertson 1902). _Andrena sericata_ rarely found in Central Europe and in Germany and limited to the Alpine region (Westrich _et al._ 1998; Westrich and Dathe 1997) and according to Neumayer (2010) is oligolectic on _Salix_ spp. (Salicaceae).

The subgenus _Platygalandrena_ with 11 species in the world is most likely plesiomorphic. Based on the research results of the Dubitzky _et al._ (2010) members of _Platygalandrena_ were separated from the subgenus _Ulandrena_, where they were placed originally by Warncke (1968) and _Ulandrena_ is the sister taxon to _Platygalandrena_. _Andrena tecta_ belongs to the subgenus _Platygalandrena_ that the adult bees of this subgenus are active from the end of March to July. (Dubitzky _et al._ 2010; Ascher and Pickering 2015).

According to Figure 24, about 77% of Andrenid bees of Iran belong to Andrenini tribe (_Andrena_ genus), followed by Panurgini (12%) and Melitturgini (11%). In the genus _Andrena_, the maximum species percentage belongs to the subgenus _Melandrena_ with 12.5%.

Given that Iranian bee fauna is rich so continuing faunal samplings is necessary in
Iran, especially in un-sampled regions to discover more new endemic threatened and rare species and subgenera.

Acknowledgments
We are indebted to Dr. Alireza Monfared for allowing us to access the Museum of Iranian Pollinating Insects of Yasouj University, Yasouj, Iran. We are also grateful to Dr. Ardeshir Ariana and Dr. Fritz Gusenleitner for providing some literatures. This project was supported by Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.

Figure 24. Composition of Andrenidae of Iran. Same color indicates the same percentage of subgenera of genus *Andrena*.
References

Andrena subgenera of Iran

فهرست مقدماتی زیر جنس‌های Andrena (Hymeniptera: Andrenidae) در ایران به همراه گزارش پنج رکورد جدید

صورت الهوردا، احمد ندیمی، علی افشاری و خالد علیف

گروه گیاه‌پرورشی، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

میوسه جانورشناسی، آکادمی ملی علوم ایران، ادراک اپرین، پاساس 1128، بلک ۵۱۴، باکو، اذربایجان

پست الکترونیک توسعه مسئول مکاتبه: nadimi@gau.ac.ir

پیام‌خوانی نویسندگان مسئول مکاتبه: shahrabani@gau.ac.ir

تاریخ دریافت: ۱۲ آذر ۱۳۹۴، تاریخ پذیرش: ۱۸ دی ۱۳۹۴، تاریخ انتشار: ۱۹ دی ۱۳۹۴

چکیده: فهرست ۴۱ زیر جنس از جنس Andrena در ایران بر اساس اطلاعات موجود در منابع Andrena منتشر شده و پژوهش حاضر تهیه شد. چهار زیر جنس و پنج گونه شامل Andrena (Lepidandrena) fusipes (Kirby, 1802) Andrena (Lepidandrena) pandellei (Pérez, Cnemidandrena) curvungula (Thomson, 1870) Andrena و Andrena (Parandrena) sericata (Imhoff, 1868) (Radoszkowski, 1876) شود. نتایج اکتشافات در مورد رکوردهای جدید بطور خلاصه به تعداد دو می‌شود.

واژگان کلیدی: Andrena، Apoidea Andrena، ایران، زنبورهای گردشافت خاکزی

Andrena (Cnemidandrena) fuscipes (Kirby, 1802)
Andrena (Lepidandrena) pandellei (Pérez, 1895)
Andrena (Parandrena) sericata (Imhoff, 1868) (Radoszkowski, 1876)