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Academic Editor ABSTRACT. Measuring biodiversity remains a fundamental yet challenging issue in conservation
Abbas Ali Zamani biology. Drylands, major components of terrestrial biomes, are particularly susceptible to
Received desertification due to climate change and human activities. In Venezuela, the highly threatened
July 24, 2025 arid ecosystems of Margarita Island harbor unique biodiversity, yet beetle diversity remains poorly

known, despite the value of beetles as models to guide conservation actions. Most beetle diversity
and ecological studies in arid and semiarid ecosystems worldwide focus on ground-dwelling
beetles. Therefore, beetle diversity in the arid environments of Margarita Island was assessed using
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Accepted three methods: pitfall trapping, yellow pan traps, and beating. The diversity patterns recorded for
February 08, 2026 each sampling technique were compared in a one-year survey from May 2012 to April 2013,
Published online including dry and rainy seasons. Asymptotic species richness estimation was used to assess beetle
February 14, 2026 richness at the study site. Coverage-based rarefaction curves and generalized linear mixed models

were employed to compare variations in richness, abundance, and Shannon-Wiener diversity
between methods and seasons. Compositional differences in assemblages were also assessed using
multivariate methods. Some 152 species were found, and asymptotic richness was 185 species.
Previous work listed 21 species of Tenebrionidae. We recorded 16 tenebrionids, of which 6 are new
for the island. Eufallia seminivea (Motschulsky, 1866) (Latridiidae), Hyperaspis octomaculata
(Gonzdlez, 2024), and the genera Zilus (Mulsant, 1850), Tiphysa (Mulsant, 1850) (Coccinellidae),
Trichodesma (LeConte, 1861) (Anobiidae), and Neolitochrus (Gimmel, 2013) (Phalacridae) are
recorded for the first time in Venezuela. Yellow-pan traps and beating showed the highest
estimations of species diversity, highlighting the important contribution of vegetation-dwelling
beetles to arid ecosystem diversity despite inherent methodological constraints.
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INTRODUCTION

The threat of extinction posed by climate change and habitat transformation raises the urgency of
assessing global biodiversity. For plants and vertebrates, this goal may be achieved by integrating
accumulated knowledge from faunistic and floristic surveys, biogeography, and systematics (Colwell &
Coddington 1994; Brummitt et al. 2021; Murali et al. 2021; Shao et al. 2021). For hyperdiverse groups,
the current state of taxonomic and biogeographic knowledge represents a challenge and may not allow
reliance on traditional approaches (Colwell & Coddington 1994; Haack et al. 2021; Meier et al. 2024).
Therefore, the design of biodiversity inventories for such diverse groups requires not only the use of
effective sampling but also estimation and extrapolation procedures (Colwell & Coddington 1994;
Gerlach et al. 2014; Haack et al. 2021; Meier et al. 2024). In this context, the evaluation of the levels of
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richness and the distribution of diversity in different environments can help identify areas of richness
and endemism and guide conservation actions (Ramirez-Hernandez et al. 2018; Pizarro-Araya et al.
2023). Drylands cover more than 45% of Earth's terrestrial surface, making them a major component of
global biomes (Marasco et al. 2023), and support nearly half of global food production (Shukla et al.,
2019). Despite the common misperception that arid ecosystems are biodiversity-poor, they harbor
remarkable diversity, including endemic species uniquely adapted to natural environmental fluctuations
(Maestre et al. 2021). However, these ecosystems face escalating threats from climate change and
anthropogenic activities, with increasing risk of changes in ecosystem functionality, including declining
soil fertility, plant productivity, and biodiversity (Fajardo et al. 2013; Berdugo et al. 2020). In Venezuela,
dryland ecosystems are highly threatened, with Margarita Island experiencing the most extensive habitat
losses. Open-cast sand mining represents the primary driver of habitat degradation in these ecosystems
(Fajardo et al. 2013).

The island of Margarita (10°59'13"N and 63°56'08"W), with an area of 952 km’, is separated from
South America by a channel approximately 25 km wide (Sanz et al. 2011). The island consists of two
sectors: the larger eastern sector and the western Macanao peninsula, which are connected by an isthmus
mainly composed of mangrove swamps (Sugden, 1986; Sanz et al. 2011). Thirty land cover types, nine
different types of vegetation covers, and eleven land uses were described for the island by Sanz et al.
(2011). The predominant and less fragmented vegetation covers are shrubland and xerophytic shrubland
(Sanz et al. 2011; Proyecto MapBiomas Venezuela, 2024). Tropical dry forests are well-developed in
seasonal riverbeds but cover small areas and show higher fragmentation levels compared with other types
of vegetation (Sanz et al. 2011; Fajardo et al. 2013). Within the Caribbean, Margarita Island’s biodiversity
stands out as unique, which has been related to its closeness to the mainland, diverse topography, and
island size (Sanz 2007; Bricefio-Linares et al. 2011). The island is larger than the Lesser Antilles, which,
along with the West Indian islands, are considered a biodiversity hotspot (Peck 2016). According to Peck
(2016), these islands present 7,000 species of endemic plants and 779 species of endemic vertebrates.
While a high level of endemism has been established for plants and terrestrial vertebrates, levels of
endemism for most insect groups are poorly documented (Peck 2016). Information on beetles of the
Lesser Antilles was reported by Peck (2016), indicating that 1572 species are limited to one or more of
the Lesser Antilles islands. Margarita Island is part of South America and its continental shelf islands,
which are supposed to have had land connections with the continent during the Pleistocene low sea
levels and are considered a different biogeographic unit from the Lesser Antilles (Peck 2016). The most
likely origin of Coleoptera in these regions may be South America (Peck 2016). The uniqueness of
Margarita Island’s biodiversity has been shown mainly by its vertebrates, but arthropods are poorly
known. The available information on beetles was compiled during the second half of the last century,
including Tenebrionidae of the Caribbean region and listing 21 species of this family (Marcuzzi 1954,
1959, 1977).

Coleoptera is the most successful and species-rich insect group, with around 380,000 species described
(Zhang et al. 2018). Beetles exhibit extraordinary morphological and ecological diversity, occupying nearly
every niche in terrestrial and freshwater ecosystems (Peck 2016; Zhang et al. 2018). They have ecological
value as scavengers and recyclers of organic materials, wood borers, pollinators, plant feeders, and
parasites. Therefore, they have been recognized as models to guide conservation actions (Gerlach et al.
2014; Peck 2016). However, most beetle diversity studies in arid and semiarid ecosystems worldwide have
focused primarily on ground-dwelling species, potentially underestimating the contribution of vegetation-
associated beetles to overall diversity (Doblas-Miranda et al. 2009; Liu et al. 2012; Liu et al. 2016; Pizarro-
Araya et al. 2023).

To update the information on beetle diversity from Margarita Island, a survey was carried out in the
Macanao Peninsula using three complementary sampling techniques to capture beetle diversity across
different microhabitats, from ground-dwelling to vegetation-associated species. The peninsula is
representative of the predominant shrublands of the island. Beetle diversity (richness and abundance) was
examined using different statistical procedures. The diversity patterns recorded through each method were
compared, including the effects of seasonality. We present an updated list of Coleoptera for the island.

https://jibs.modares.ac.ir Journal of Insect Biodiversity and Systematics 2026 ¢ 12 (02)


https://jibs.modares.ac.ir/

MATERIAL AND METHODS

Study site. The study was carried out in the Macanao Peninsula (10°55'-11°11'N, 63°46'-64°24'W), Margarita
Island, on the northeastern coast of Venezuela. This research forms part of a broader multidisciplinary
project aimed at assessing the vulnerability of Macanao’s dryland ecosystems to environmental degradation
driven by extractive activities, particularly open-cast sand mining. The Peninsula has an area of 331 km’.
The average annual temperature is 27°C (range: 24°C to 31°C); mean annual rainfall is 522 mm (+ 224 mm),
with a major peak in August and a distinct dry season from January to June (Sanz & Ferraro-Rodriguez,
2006; Fajardo et al. 2013). The vegetation type corresponds to the predominant shrublands of the island. It
is composed of a mixture of open cactus assemblages and thorn forests, with columnar cacti such as
Stenocereus griseus and Fabaceae (Prosopis juliflora, Caesalpinia coriaria, and Parkinsonia praecox) as the
dominant vegetation. A landcover map and images of the study site are presented in Figure 1.

Sampling. Monthly samplings from May 2012 to April 2013 were done in two sites located on opposite
sides of the island (Comején sector 11°0220" N, 64°13'34" W, Chacaracual sector 11°02'18" N, 64°13'36" W,
Fig. 1). In each site, twelve plots of 10x10 m were placed randomly. Six plots were placed at the north side
of the seasonal riverbeds, and the other six plots were placed at the south side. Beetles were collected using
three sampling methods: beating (BT), pitfall traps (PTF), and yellow-pan traps (YPT). BT was performed by
beating vegetation in five random points within the plots twice a day. Fallen insects on a piece of white
fabric (I1x1 m) below the vegetation were collected with tweezers and stored in the same vial with 70%
alcohol. PFTs were 9 cm in diameter and 14 cm deep. They were one-third filled with ethylene glycol as a
preservative and buried. Four traps were placed per plot under two types of microhabitats: two traps under
cacti and two traps under other types of vegetation (non-cacti). Due to logistical issues, PFTs were placed
only in the Comején sector. On the other hand, two YPTs were placed per plot; these consisted of yellow
containers with a soap solution that were placed in vegetation branches. Both PFT and YPT were active for
24 hours, and the material collected from each trap was stored in separate vials with 70% alcohol. The
sampling design afforded 288 beating samples (1 sample x 24 plots x 12 months), 576 PTF samples
(4 samples x 12 plots x 12 months), and 576 YPT samples (2 samples x 24 plots x 12 months).
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Figure 1. Map of the study site. A. Margarita Island landcover map (2013) with sampling plots locations (UTM
coordinates) (Source: Proyecto MapBiomas Venezuela, 2024); B. Relative situation of Venezuela in South America.
C. Relative situation of Margarita Island in the Caribbean Sea and Venezuela.
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Taxonomic identification. All individuals were assigned to morphologically recognizable units (morpho-
species, referred to as species for simplicity), which were used in diversity estimations. Some morphospecies
were excluded from the dataset when morphological similarities prevented confident delimitation as single
or multiple morphospecies. Additionally, all Scolytinae were excluded from analyses because it has been
suggested that morphological convergence and polyphyly within this subfamily may complicate accurate
species delimitation without molecular data (Pistone et al. 2018). Taxonomic determination of specimens
was done to the lowest possible taxon name, based on available literature (e.g., Fisher 1925; Marcuzzi 1954,
1959, Werner 1970; Campbell 1971; Marcuzzi 1977; White 1971; Moldenke 1981; Hava 2004; Kingsolver
2004; Martinez 2005; Gonzalez 2015; Vaz-de-Mello et al. 2011; Constantin 2013, 2017; Ivie & Hart 2016;
Cortés-Hernandez & Morrone 2019; Legalov 2018, 2020). Cerambycidae, Coccinellidae, Cleridae, and some
Chrysomelidae were determined by specialists. Although the Museo del Instituto de Zoologia Agricola
“Francisco Ferndndez Yepez”, Universidad Central de Venezuela (MIZA - UCV) has the largest
entomological collection in Venezuela, with more than three million specimens, there are no accessible
records of Margarita Island. A reference collection of the island’s recorded species is housed at the
Laboratorio de Biologfa de Organismos (Instituto Venezolano de Investigaciones Cientificas).

Data Analysis. Data analyses were carried out in R (R Team Core 2024). To estimate the number of
species expected in the sampling area, asymptotic richness (Chaol) was computed in iNEXT package
(Chao 1984; Chao et al. 2014; Hsieh et al. 2025) using a pooled data set with the three sampling methods.
Sample coverage was also computed with the same R package. For comparisons of species richness and
diversity (Shannon-Wiener) between sampling methods, coverage-based rarefaction curves with 95%
confidence intervals based on 100 randomizations were generated. Extrapolations were done up to twice
the reference sample sizes (Chao & Jost 2012). Following Chao & Jost (2012), sample coverages were
computed, and comparisons were done at the lowest final sample coverage among the three assemblages.
These analyses were also performed using iNEXT (Hsieh et al. 2025). The observed diversity was obtained
by calculating the Shannon-Wiener diversity index per sample using the vegan package (Oksanen et al.
2019). Generalized linear mixed models (GLMMs) were used to compare abundance, observed richness,
and diversity between sampling methods, including the season (dry and rainy) as a second factor to assess
variations in diversity patterns due to season. Since PFT also accounted for the microhabitat variability,
a separate analysis of this effect was done before comparing the patterns obtained by the three sampling
methods. Data per plot were pooled. To account for the non-independence of data points due to the
repeated sampling per site and date, random intercepts were added to the models. GLMMs were fitted
using the Ime4 package (Bates et al. 2015). For models for which no overdispersion was detected, Poisson
distributions of errors were used for abundance and species richness. In some cases, overdispersion was
detected, and the negative binomial distribution was used instead. Normal distribution was used for
Shannon-Wiener diversity. Significant differences were assessed by multiple post hoc comparisons
through the multcomp package (Hothorn et al. 2008). For significant interaction method x season, user-
defined post hoc comparisons were used, since we were interested in differences of the same methods
between seasons and different methods within seasons.

To evaluate variations in assemblages recorded with each sampling technique and seasons, several
procedures were carried out using the vegan package. First, a non-metric multidimensional scaling (NMDS)
was performed based on species abundance added up per month (each observation represents a month).
Multivariate differences in species assemblages were tested employing a two-way (method x season)
Permutational Multivariate Analysis of Variance (PERMANOVA). Sampling methods complementarity
(distinctness) was calculated using Marczewski-Steinhaus (M-S) distance (Colwell & Coddington 1994). M-
S distance for pairwise calculations was given by the formula:

a+b—2j

MS™ a+b— j
Where for a pair A and B, a is the number of species in A, b is the number of species in B, and j is the
number of species in common. Finally, range-abundance curves with log-transformed relative abundances

were constructed for each sampling technique.
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RESULTS

From a one-year survey, 3706 beetle individuals were collected. We recorded 152 (morpho) species in 31
families, of which 92 genera were determined, and 26 were named at the species level. The remaining
species could not be determined beyond the family, subfamily, or tribe level. The most species-rich
families were Curculionidae (26), Coccinellidae (18), Tenebrionidae (16), Chrysomelidae (15), and
Cerambycidae (8). Twelve families have a richness between 3 and 6 species, while the remaining 14
families were represented by one or two species (Fig. 2). Chrysomelidae, Tenebrionidae, and
Curculionidae represent about 82% of all individuals collected (Fig. 2). Five genera are added to the
tenebrionid fauna of Margarita Island: Paratenetus (Spinola, 1844), Strongylium (Kirby, 1819), Lobopoda
(Solier, 1835), Lystronychus (Latreille, 1829), and Hymenorus (Mulsant, 1852). Paratenetus was represented
by two undetermined species, whereas each Strongylium, Lobopoda, Lystronychus, and Hymenorus was
represented by one undetermined species. These increase the number of tenebrionid species on the
island to 27. Regarding other families, Eufallia seminivea (Motschulsky, 1866) (Latriididae), Hyperaspis
octomaculata (Gonzalez, 2024), and the genera Zilus (Mulsant, 1850), Tiphysa (Mulsant, 1850)
(Coccinellidae), Trichodesma (LeConte, 1861) (Anobiidae), and Neolitochrus (Gimmel, 2013) (Phalacriidae)
are recorded for the first time in Venezuela. A list of recorded beetles can be found in Appendix 1.
Asymptotic richness estimation for the study site (the three methods pooled) converged in an estimated
richness of 185 species (95% CI: 153, 218). The proportion of singletons was 26% (Table 1).

BT recorded the highest observed richness with 114 species, followed by YPT with 71 species,
whereas PFT only recorded 36 species. The proportions of singletons were higher for PFT (58%), followed
by YPT (44%), whereas BT showed the lowest value (37%) (Table 1). Of PFT singletons, 43% were ground-
dwelling beetle species (scarabs, carabids, and curculionids), and the remaining 57% were vegetation-
dwelling species (some coccinellids, curculionids, and tenebrionids), likely incidental in PFT. Most of the
singletons found in BT samples (60%) were species exclusively recorded for this method and included
some Coccinellidae, Curculionidae, Buprestidae, Chrysomelidae, Bostrichidae, and Anobiidae species.
The remaining BT singletons were also found in YPT samples. Regarding YPT, most of the singletons in
these samples were also recorded in BT samples (61%), while the remaining ones were also found in PFT
(curculionids and chrysomelids associated with vegetation).
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Figure 2. Species richness and relative abundance (RA) of the beetle families collected in the Macanao Peninsula,
Margarita Island, Venezuela. The category “Others” includes 14 families represented by one or two species.
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Regarding coverage-based comparisons, vegetation-dwelling beetles (BT and YPT) showed higher species
richness than ground-dwelling beetles (PFT). Following Chao & Jost (2012), we standardized
comparisons at the lowest sample coverage level that does not exceed twice the reference sample size
of any assemblage. This yielded a base sample coverage of SC = 0.9558, at which YPT and PFT required
extrapolation while BT remained within the interpolation range (Table 2). At this standardized
coverage, YPT showed the highest richness, followed by BT and PFT. However, PFT exhibited
substantial uncertainty in the extrapolated range, with confidence intervals overlapping zero at the
lower bound. To provide a more conservative comparison based entirely on observed (interpolated)
data, we also compared assemblages at SC = 0.9074, the lowest coverage among methods within their
original sample sizes (Table 1, Fig. 3A). At this coverage level, YPT recorded 71 species, BT recorded
37 species, and PFT recorded 17 species. The 95% confidence intervals for PFT did not overlap with
those of either vegetation-dwelling method at this coverage level or at any lower coverage values
(Fig. 3A, Table 2), indicating statistically significant differences in species richness. Rarefied species
diversity (Shannon-Wiener) was higher for vegetation-dwelling than for ground-dwelling beetles at
both values of standardized coverage (Table 2, Fig. 3B). 95% CI did not overlap at any point below these
coverage values (Fig. 3B).
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Figure 3. Coverage-based rarefaction curves for the three sampling methods with 95% CI (shaded areas represent
95% CI). A. Beetle species richness. B. Beetle diversity (Shannon-Wiener). Vertical dashed lines indicate the base
coverages used for comparisons (red dashed line SC = 0.9074, black dashed line SC = 0.9558). BT: beating, YPT: yellow-
pan traps, PFT: pitfall traps.

Table 1. Summary statistics of species assemblages, including number of individuals, observed richness, sample
coverage (SC), and number of singleton species across three assemblages (BT, PFT, YPT) and the combined dataset
(ALL).

Assemblage ‘ Individuals Obs. Rich ‘ SC ‘ Singletons
BT 2979 114 0.9859 42
PFT 393 36 0.9466 21
YPT 334 71 0.9074 31
ALL 3706 152 0.9892 40
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Table 2. Comparison of species richness and diversity across assemblages at equal sample coverage. Comparisons
are shown at two coverage levels: SC = 0.9074 (lowest coverage achieved within original sample sizes for all
methods) and SC = 0.9558 (base coverage following Chao & Jost 2012, requiring extrapolation for YPT and PFT).
R: rarefaction. E: extrapolation.

Assemblage ‘ SC | Individuals ‘ Method ‘ Richness (95% CI) | Diversity (95% CI)
BT 0.9074 196 R 37 (33, 40) 5.39 (5.06, 5.72)
PFT 0.9074 103 R 17 (7, 27) 4.12 (3.57, 4.67)
YPT 0.9074 334 R 71 (57, 85) 33.70 (29.35, 38.05)
BT 0.9558 595 R 61 (56, 67) 13.50 (12.43, 14.58)
PFT 0.9558 783 E 55 (0, 127) 7.88 (6.23, 9.52)
YPT 0.9558 607 E 89 (70, 107) 36.87 (31.70, 42.04)

Microhabitats where pitfall traps were placed did not affect ground-dwelling beetles' diversity patterns
(Fig. 4A-C). Models results indicated non-significant effects at the 5% level after controlling for random
effects on observed richness (microhabitat: chisqu = 0.76, p = 0.38; season: chisqu = 3.39, p = 0.07;
microhabitat x season: chisq, = 1.03, p = 0.31), abundance (microhabitat: chisq,, = 1.59, p = 0.21; season:
chisqq = 3.01, p = 0.08; microhabitat x season: chisq, = 2.20, p = 0.13) and Shannon-Wiener diversity
(microhabitat: chisqg = 0.92, p = 0.33; season: chisq,, = 3.04, p = 0.08; microhabitat x season: chisq,, = 2.45,
p =0.12, Fig. 4C).

GLMMs results partially accord with rarefaction curves in Fig. 3. Statistically significant effects on
beetle observed richness were found for the method (chisqy, = 236.47, p < 0.001) and its interaction with
the season (chisq, = 16.61, p < 0.001), but not for the season itself (chisq,, = 0.22 p = 0.64). In contrast
with the rarefied species richness, where YPT showed the highest values among methods, the BT method
showed the highest observed richness in both seasons (Dry: Zgper=9.44, p < 0.001, Zgryper= 6.94, p < 0.001;
Rainy: zgpr=11.35, p < 0.001, zgyper=7.33, p < 0.001; Fig. 4D), followed by YPT which caught a higher
number of species than PFT during both seasons (Dry: Zeeryer= -3.32, p = 0.007, Rainy: Zyryer=-6.83, p <
0.001, Fig. 4D). No differences were observed between seasons for BT and YPT (BT,,..,: z = -0.61, p =
0.99, YPT,,, ..u,s z=-0.31, p=0.99), but PFT caught more species during the dry season (z =3.86, p <0.001,
Fig. 4D).

Beetle abundance showed a similar pattern to the one observed for richness (Fig. 4E). There were a
statistically significant effect of method and the interaction with season (method: chisq, = 205.07, p <
0.001; season: chisqq = 2.83, p < 0.09; method x season: chisq, = 14.21, p < 0.001). Abundance recorded
with the BT method was the highest in both seasons (Dry: Zgpr= 6.56, p < 0.001, Zgr\r= 6.53, p < 0.001;
Rainy: zgrper= 11.89, p < 0.001, Zgyer= 7.70, p < 0.001), whereas PTF and YPT showed differences in
abundance during the rainy season, but not during the dry season (Dry: Zpprypr=-1.11, p = 0.84, Rainy: zy
ver=-5.56, p<0.001). BT and YPT did not differ in beetle abundance between dry and rainy seasons (BT,
ang: Z = 0.35, p >0.99, YPT,, ..., z=0.78, p = 0.96), while PFT caught more individuals during the dry
season (z=3.77, p = 0.001).

For the observed Shannon-Wiener diversity index, significant effects of method and its interaction
with season were found (method: chisq, = 189.20, p < 0.001; season: chisqu = 0.13, p = 0.72; method x
season: chisqy, = 8.16, p = 0.02). Although rarefaction curves suggested that YPT may record the highest
diversity, pairwise comparisons revealed a significantly higher observed diversity for BT in comparison
to PFT and YPT during both seasons, (Dry: Zgpr= 8.09, p < 0.001, Zgyer = 3.87, p < 0.001; Rainy: Zgrper=
11.46, p < 0.001, zgr\er= 3.71, p = 0.002, Fig. 4F). YPT showed higher diversity than PFT during both
seasons (Dry: Zppryer = -4.26, p < 0.001, Rainy: Zeryer=-7.79, p < 0.001, Fig. 4F). All the sampling methods
showed non-significant differences in the recorded diversity between seasons (BT, .,: z=-0.70, p=0.98,
YPT,yiny: 2 =-0.82, p=0.95, PFT,,, s z=2.29, p = 0.15).
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Figure 4. Boxplots. Plots on the left display comparisons for pitfall traps microhabitats, and seasons: A. Richness;
B. Abundance; C. Shannon-Wiener diversity. Plots on the right display comparisons for sampling methods and
seasons: D. Richness; E. Abundance; F. Shannon-Wiener diversity. Comparisons were done between different
methods within seasons and the same methods between seasons. Legends for all left and right panels are presented at
the top. Letters above boxplots indicate statistical significance for pairwise comparisons (different letters indicate
statistically significant results), C: Cacti, NC: Non-cacti vegetation, BT: beating, YPT: yellow-pan traps, PFT: pitfall traps.

The BT method recorded the highest number of exclusive species (58), whereas PFT and YPT showed a
lower number of exclusive species (18 and 12, respectively). Complementarity was 67% between BT and
YPT, 97% between BT and PFT, and 92% between PFT and YPT. The ordination obtained by NMDS
indicated compositional differences between methods but not between seasons (Fig. 5). Monthly samples
belonging to each method showed clustering, with ground-dwelling assemblages (PFT samples) showing
higher temporal variability than vegetation-dwelling assemblages (BT and YPT samples). The range-
abundance curves (Fig. 6) show the assemblages of dominant species. Vegetation-dwelling assemblages
recorded with BT were dominated by Yingaresca ornata (Jacoby, 1889) (Chrysomelidae), one species of
Pandeleteius (Schoenherr, 1834) (Curculionidae), and Epitragus aurulentus (Kirsch, 1866) (Tenebrionidae).
Trichoton lapidicola (Champion, 1885) (Tenebrionidae) was the dominant species in ground-dwelling
assemblages; other Tenebrionidae and Curculionidae were also abundant, but the species were different
from those in BT (Fig. 6). Abundances in YPT samples were low in general, and dominant species were also
found in BT samples. Nonetheless, species such as Achryson surinamun (Linné, 1767) (Cerambycidae), one
species of Pachyschelus (Solier, 1833), Chrysobothris (Eschscholtz, 1829) (Buprestidae), Neolitochrus
(Phalacriidae), and Cymatodera (Gray, 1832) (Cleridae) were exclusively recorded with this method. In
agreement with NMDS results, PERMANOVA found significant differences in assemblages between
methods (pseudo-F = 7.09, p < 0.001), but not between seasons (pseudo-F = 1.24, p = 0.20) or the interaction
(pseudo-F = 1.35, p = 0.08).
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Figure 6. Range-abundance curves. The first 10 ranks are represented. The species presented for BT and PFT
represent more than 80% of the total abundance recorded with these methods. The species presented for YPT
represent 52% of the total abundance since this method showed many species with low abundances. BT: beating,
YPT: yellow-pan traps, PFT: pitfall traps, pi: relative abundance.

DISCUSSION

A total of 152 beetle species were recorded in the study area, with the asymptotic richness estimation
converging at 185 species. These estimations suggest that the arid environments of the Macanao
Peninsula were under-represented in the number of species observed. The proportion of singletons found
(26%) may indicate incomplete sampling (Kirmse 2024), though this pattern is common in highly diverse
ecosystems and may reflect the presence of rare and transient species with low detection probabilities
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(Haack et al. 2021; Kirmse 2024). The overall proportion of singletons in our study (26%) was lower than
commonly reported for beetle assemblages in arid ecosystems, where ground-dwelling taxa have shown
singleton proportions between 30% and 49% (Guthrie et al. 2010; Ahrens et al. 2016; Pizarro-Araya et al.
2023). This difference is attributable to our inclusion of vegetation-associated beetles, which showed
lower singleton proportions than ground-dwelling assemblages. Ground-dwelling beetles showed the
highest proportion of singletons (58%), though this may be inflated by incidental captures of vegetation-
dwelling species in PFT (e.g., Epitragus sp., Diomus sp., Longitarsus sp.). Additionally, ground assemblages
were highly dominated by two species, Trichoton lapidicola and Blapstinus sp., which together accounted
for 64% of all collected individuals. Vegetation-dwelling assemblages exhibited different diversity
patterns. When considered separately, BT (37% singletons) and YPT (44% singletons) appeared to have
substantial singleton proportions. However, most singletons from YPT were shared with BT. Notably,
YPT captured unique species such as Pachyschelus sp., Mimocestes sp., Cybocephalinae, and Chrysobothris
sp. Considering the complete vegetation-dwelling assemblage (combining BT and YPT), the singleton
proportion decreases to 28%, highlighting the need to employ multiple suitable sampling techniques to
obtain comprehensive inventories in species-rich tropical ecosystems (Kirmse 2024). The incidence of
singletons may also reflect ecological processes beyond sampling incompleteness. Aggregated
distribution patterns are common in insect communities and can generate apparent rarity at local scales
(Basset & Novotny, 1999). Rare species at one site may reflect source-sink dynamics or mass effects
(Novotny & Basset, 2000). For instance, species rare on a particular host plant may be more abundant on
alternative hosts or distributed across multiple host species at low densities, maintaining local
populations through immigration from source populations on other plants (Novotny & Basset, 2000).
Plant species richness in our sampling plots ranged from 7 to 14 species. Sampled plants included shrubs
and small trees such as Prosopis juliflora, Bastardia viscosa, Caesalpinia coriaria, Cordia curassavica, Guaiacum
officinale, Lycium nodosum, Melochia tomentosa, Croton conduplicatus, and Gossypium hirsutum. Variation of
plant composition and individual plant size across plots could have created heterogeneous microhabitat
conditions that likely contribute to patterns of beetle rarity and aggregation.

The three sampling methods captured distinct beetle assemblages, reflecting both their inherent biases
and the ecological stratification of beetle communities. PFT, as expected, primarily captured ground-
dwelling beetles, with tenebrionids dominating collections; T. lapidicola, Blapstinus sp., and Goajiria
margaritensis (Marcuzzi, 1986) accounted for 70% of pitfall abundance. This dominance of Tenebrionidae
aligns with patterns observed in arid ecosystems worldwide, where this family constitutes a major
component of epigeal beetle assemblages (Pfeiffer & Bayannasan, 2012; Pizarro-Araya & Cepeda-Pizarro
2013; Niu et al. 2020). It has been noted that the importance of considering microhabitat-scale responses in
sampling design for pitfall traps (Mehrabi et al. 2014). However, we did not find differences in beetle
abundance, richness, and diversity recorded under cacti and non-cacti vegetation. The trapping liquid has
also been pointed out as an important source of bias in dry conditions (Ruiz-Lupion et al. 2019), which may
explain the higher richness and abundance we observed for ground-dwelling beetles during the dry season.
Beating collected the highest number of species (75% of total observed richness), capturing primarily
vegetation-associated taxa, including phyllophagous, xylophagous, anthophilous, and predatory species.
Despite potential biases toward larger or less mobile insects (Ozanne 2005), this method successfully
recorded minute coccinellids (Scymnus, Diomus) and weevils (Sibinia), as well as active, difficult to sample
species such as Anthribidae (Valentine 2002). YPT showed lower performance in observed richness and
abundance, but capturing some unique species absent from BT samples (e.g., Pachyschelus sp., Chrysobothris
sp.). Despite the lower complementarity observed between BT and YPT (M-S distance), their unique
captures and differences in assemblage patterns (NMDS results) demonstrate their value as complementary
vegetation-sampling approaches.

Coverage-based rarefaction at standardized sample coverage (SC = 0.9074) suggested that vegetation-
dwelling assemblages harbored a higher species richness than ground-dwelling assemblages (Table 2,
Fig. 3A). The large confidence intervals for PFT at higher coverages reflect greater uncertainty in richness
estimation, which is expected when assemblages contain many rare species with extremely small relative
abundances that are difficult to detect (Chao et al. 2014; Colwell et al. 2012). This uncertainty is consistent
with the highly uneven abundance distribution observed in the ground-dwelling assemblage, where two
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tenebrionid species accounted for 64% of all individuals. It has been pointed out that overlapped intervals
do not guarantee non-significance (Colwell et al. 2012). For mega-diverse communities, a significant
difference in richness across assemblages may not be detected statistically with rarefaction/extrapolation
methods. Extrapolated richness estimates are subject to large uncertainties due to small sample sizes,
leading to wide and overlapped confidence intervals, indicating that data may be inconclusive (Colwell et
al. 2012; Chao et al. 2016).

In arid ecosystems, shrubs are recognized as primary drivers of spatial heterogeneity, creating patches
with favorable microclimatic conditions and higher nutrient and water availability compared to bare soil
(Doblas-Miranda et al. 2009; Niu et al. 2020; Pizarro-Araya et al. 2023). However, research has focused on
how this vegetation structure affects ground-dwelling arthropod assemblages (Doblas-Miranda et al. 2009),
while the diversity associated with vegetation itself has been ignored. Most beetle diversity studies in arid
regions employ sampling methods designed to capture epigeal fauna or active fliers (Pizarro-Araya &
Cepeda-Pizarro, 2013; Guedes et al. 2019; Pizarro-Araya et al. 2023). Our results suggest that an important
component of dryland beetle diversity remains poorly documented in the existing literature. This is
exemplified in the case of Tenebrionidae. We found that some species (T. lapidicola, Blapstinus sp., G.
margaritensis) were captured exclusively in PFT, while others (Epitragus aurulentus, Lystronychus sp.,
Paratenetus sp.) were associated with vegetation samples. This indicates that both major ecological groups
of Tenebrionidae, ground-dwelling and vegetation-dwelling, are well represented in the Macanao arid
region. Other examples are Sibinia species, which can be monophagous or oligophagous and are strictly
bound to vegetation with specific habitat demands, which also provides them with significant bioindicative
value (Kostalova & Szénasi 2015). It is worth noting that 22 genera recorded in this study, as well as
Achryson surinamun and Amphicerus cornutus (Pallas, 1772), have been previously collected on Prosopis
species (Ward, 1977; see Appendix 1), highlighting the importance of particular plant species for beetle
assemblages in this arid environment. The observed richness in Macanao is considerably lower than that of
other South American continental shelf islands with similar areas. For instance, Peck et al. (2002) recorded
672 beetle species in 69 families for Tobago Island ("300 km?), with only 22 genera and one species shared
with our study. This difference is likely due to our small sampling area and the more extensive forest cover
in Tobago (nearly 60% of total area), including evergreen forests and one of the best-preserved tropical dry
forest ecosystems in the eastern Caribbean and northern South America (Baban et al. 2009; Boodram &
Oatham, 2013). Similarly, richness in the Lesser Antilles exceeds our findings; for Saint Vincent Island (342
km?), 536 beetle species in 62 families were recorded (Peck, 2010). Macanao shares 61 genera and 8 species
with the Lesser Antillean islands, where approximately 50% of beetle species show wide distributions across
the Antilles and Neotropics (Peck, 2009, 2010, 2016).

Despite lower overall richness, some beetle diversity patterns found in Macanao align with patterns
observed in continental South American drylands. Curculionidae, Chrysomelidae, Tenebrionidae, and
Coccinellidae were the most species-rich and abundant families, consistent with findings from other South
American arid and semiarid ecosystems (Guedes et al. 2019; Pizarro-Araya et al. 2023). These families are
also among the most diverse in the Lesser Antilles (Peck 2016). The lower richness in Macanao likely reflects
the limited sampling area, ongoing habitat degradation from mining activities, and methodological
limitations of our study, highlighting the conservation importance and the need for continued inventory
efforts in this dryland ecosystem. Among the methodological limitations, the use of morphospecies may
have led to underestimation of true species richness, as morphospecies approaches often miss cryptic
diversity as revealed by molecular methods (Hendrich et al. 2010; Pistone et al. 2018; Zhou et al. 2019, Ren
& Zhang, 2024). However, morphospecies sorting by non-specialists can yield diversity estimates
comparable to those produced by taxonomic experts, and some research suggests that the monitoring and
assessment of insect diversity may be achieved by the careful use of morphospecies (Oliver & Beattie 1996;
Derraik et al. 2002; Obrist & Duelli, 2010; Hackman et al. 2017; Kirmse 2024). In our study, morphospecies
classification was performed by researchers with formal training in beetle morphology and taxonomy.
Furthermore, some problematic groups were excluded. Another main limitation was the absence of light
traps in our sampling design, causing an inadequate sampling of nocturnal beetle species, potentially
missing an important component of the beetle diversity. The limited spatial extent of our sampling area
further constrains the extrapolation of our findings to the entire peninsula. Despite these limitations, our
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study provides the most comprehensive assessment of beetle diversity in Margarita Island drylands to date
and establishes a valuable baseline for future monitoring and conservation efforts.

The lower beetle richness compared to other Caribbean islands with better preserved habitats,
combined with the ongoing threat from open-cast mining, highlights the vulnerability of the Macanao
dryland ecosystem. The contribution of vegetation-dwelling beetles to overall diversity highlights that
conservation strategies must target not only the requirements of ground-dwelling beetles but also the
vegetation structure that supports diverse vegetation-dwelling beetle assemblages. It is worth noting that,
for Venezuela, there are not many sources available for identifying beetle species for many groups. In some
cases, literature from the Antilles, the United States, Mexico, and Colombia was used with caution,
supplemented with descriptions to corroborate the determination. Although in most cases species
identification was not possible, listing higher taxa still represents valuable baseline data for this poorly
explored region. Such inventories are essential for monitoring biodiversity change. Future studies
incorporating nocturnal sampling and replication across a larger area would further refine our understanding
of beetle diversity patterns and their responses to environmental change in this insular arid ecosystem.
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