Volume 10, Issue 2 (2024)                   J. Insect Biodivers. Syst 2024, 10(2): 177-194 | Back to browse issues page


XML Print


1- IEBI (Instituto para el Estudio de la Biodiversidad de Invertebrados), Facultad de Ciencias Naturales, Universidad Nacional de Salta, Av. Bolivia 5150, Código Postal 4400, Salta, Argentina
2- Laboratorio de Entomología, Instituto Argentino de Investigaciones de las Zonas Áridas (IADIZA), Centro Científico Tecnológico CONICET Mendoza, Casilla de Correo 507, 5500 Mendoza, Argentina
3- CONICET-CCT Salta. IEBI (Instituto para el Estudio de la Biodiversidad de Invertebrados), Facultad de Ciencias Naturales, Universidad Nacional de Salta-CONICET-CCT Salta, Av. Bolivia 5150, Código Postal 4400, Salta, Argentina , jcorronca@gmail.com
Abstract:   (624 Views)
The dynamics and complexity of plant communities influence the diversity and distribution of animals in various environments. Coleoptera are the most diverse group of insects and are valued as monitoring and environmental assessment tools. However, their diversity and dynamics in these high-altitude environments are poorly known. Using pitfall traps and suction sampling, we collected beetles to study their community responses to changes in different vegetation heterogeneities (low, intermediate, and high). The heterogeneity gradient was determined by considering the dominant plant species in each habitat, the percentage of vegetation coverage, and the percentage of vertical strata. Guild's responses to vegetation heterogeneity were analysed in conjunction with the patterns of alpha and beta diversity in beetles. Representatives of 41 species/morphospecies of beetles, 16 families, and four guilds were reported. Significant variations were observed in guild composition and alpha and beta diversity, especially between high and low vegetation heterogeneity habitats. The significant species turnover between sites is the main factor responsible for the high beta diversity, supporting considerable habitat heterogeneity within these environments. Phytophagous, detritivorous, necrophagous, and predatory beetles exhibited distinct responses to the vegetation's heterogeneity. This suggests that every habitat under investigation possesses a distinct structure of beetle communities. Predators were important in habitats with more diverse vegetation, while phytophagous were important in the most homogeneous ones. Beetle communities in the Puna and Altos Andes of Salta province respond positively to vegetation heterogeneity, which plays a crucial role in determining the composition of small-scale beetle communities in arid high-altitude environments.
Full-Text [PDF 2577 kb]   (315 Downloads)    

Article Type: Research Article | Subject: Biodiversity
Received: 2023/10/25 | Accepted: 2024/01/24 | Published: 2024/02/3

References
1. Aballay, F.H., Flores, G.E., Silvestro, V.A., Zanetti, N.I. & Centeno, N.D. (2016) An illustrated key to, and diagnoses of the species of Tenebrionidae (Coleoptera) associated with decaying carcasses in Argentina. Annales Zoologici, 66 (4), 703-726. [DOI:10.3161/00034541ANZ2016.66.4.021]
2. Abdel-Dayem, M.S., Oraby, G.M. & Semida, F.M. (2007) Assessing the potential role of beetles as bioindicators in south Sinai, Egypt. In: Proceeding of the Second International Conference of Economic Entomology, 8-11 December 2007, Entomological Society of Egypt, Cairo, Egypt, 1, 147-168.
3. Aldhafer, H.M., Abdel-Dayem, M.S., Aldryhim, Y.N., Fadl, H.H., El-Torkey, A.M., Elgharbawy, A.A. & Setyaningrum, H. (2016) Diversity and composition of ground-dwelling beetle assemblages (Insecta: Coleoptera) in Rawdhat Khorim National Park, Kingdom of Saudi Arabia. Journal of Arid Environments, 127, 187-191. [DOI:10.1016/j.jaridenv.2015.11.007]
4. Alonso-Zarazaga, M.A. (2015) Clase Insecta: Orden Coleoptera. Revista IDE@-SEA, 55, 1-18.
5. Barton, P.S., Cunningham, S.A., Manning, A.D., Gibb. H., Lindenmayer, D.B. & Didham, R.K. (2013) The spatial scaling of beta diversity. Global Ecology and Biogeography, 22, 639-647. [DOI:10.1111/geb.12031]
6. Baselga, A. (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19 (1), 134-143. [DOI:10.1111/j.1466-8238.2009.00490.x]
7. Baselga, A., Orme, C.D.L., Villéger, S., De Bortoli, J. & Leprieur, F. (2013) Package "betapart": Partitioning beta diversity into turnover and nestedness components. R package version 1.3. Available at: http://CRAN.R-project.org/package=betapart [DOI:10.1111/j.2041-210X.2012.00224.x]
8. Betancourt, C.M., Scatoni, I.B. & Morelli, E. (2009) Insectos del Uruguay. Universidad de La República. Facultad de Agronomía. Facultad de Ciencias, Montevideo. 658 p.
9. Blondel, J. (2003) Guilds or functional groups: does it matter? Oikos, 100, 223-231. [DOI:10.1034/j.1600-0706.2003.12152.x]
10. Bubenas, O., Zarzoso, F., Fuster, A. & Diodato, L. (2013) Coleópteros recicladores: Tenebrionidae y Scarabaeidae en ambientes forestales de la provincia de Santiago del Estero, con diferentes características edáficas y florísticas. In: IX Jornadas de Ciencia y Tecnología de las Facultades de ingeniería del NOA, Universidad Nacional de Santiago del Estero, 2013, 1-7.
11. Cardoso, P. (2009) Standardization and optimization of arthropod inventories- the case of Iberian spiders. Biodiversity and Conservation, 18, 3949-3962. [DOI:10.1007/s10531-009-9690-7]
12. Cardoso, P., Pekár, S., Jocqué, R. & Coddington, J.A. (2011) Global patterns of guild composition and functional diversity of spiders. PLoS ONE, 6 (6), e21710. [DOI:10.1371/journal.pone.0021710]
13. Chao, A., Colwell, R.K., Lin, C.W. & Gotelli, N.J. (2009) Sufficient sampling for asymptotic minimum species richness estimators. Ecology, 90 (4), 1125-1133. [DOI:10.1890/07-2147.1]
14. Chao, A., Kubota, Y., Zelený, D., Chiu, C.H., Li, C.F., Kusumoto, B., Yasuhara, M., Thorn, S., Wei, C.L., Costello, M.J. & Colwell, R.K. (2020) Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 35, 292-314. [DOI:10.1111/1440-1703.12102]
15. Cheli, G.H., Carrara, R., Bandieri, L. & Flores, G.E. (2021) Distribution and environmental determinants of darkling beetles assemblages (Coleoptera: Tenebrionidae) in Península Valdés (Argentinean Patagonia). Anais da Academia Brasileira de Ciências, 93 (3), e20201282. [DOI:10.1590/0001-3765202120201282]
16. Cheli, G.H., Bosco, T. & Flores, G.E. (2022) The role of Nyctelia circumundata (Coleoptera: Tenebrionidae) on litter fragmentation processes and soil fertility in Northeastern arid Patagonia. Geoderma, 415, 1-7. [DOI:10.1016/j.geoderma.2022.115770]
17. Chung, A.Y.C., Eggleton, P., Speight, M.R., Hammond, P.M. & Chey, V.K. (2000) The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Bulletin of Entomological Research, 90, 475-496. [DOI:10.1017/S0007485300000602]
18. Crowson, R.A. (1981) The Biology of the Coleoptera. Academic Press, Harcourt Brace Jovanovich, New York, 802 p.
19. Cruz, I.G. (2017) Artrópodos en ecorregiones de altura: Evaluación del efecto de la heterogeneidad del hábitat sobre la diversidad de artrópodos con énfasis en arañas (Araneae) y hormigas (Formicidae) (Unpublished doctoral thesis) Facultad de Ciencias Naturales, Universidad Nacional de Salta, Argentina.
20. Dieker, P., Drees, C., Schmitt, T. & Assmann T. (2013) Low genetic diversity of a high mountain burnet moth species in the Pyrenees. Conservation Genetics, 14, 231-236. [DOI:10.1007/s10592-012-0424-0]
21. Doblas-Miranda, E., Sánchez-Piñero, F. & González-Megías, A. (2007) Soil macroinvertebrate fauna of a Mediterranean arid system: Composition and temporal changes in the assemblage. Soil Biology and Biochemistry, 39, 1916-1925. [DOI:10.1016/j.soilbio.2007.02.009]
22. Elgueta, M. (1988) Insectos epigeos de ambientes altomontanos en Chile Central: algunas consideraciones biogeográficas con especial referencia a Tenebrionidae y Curculionidae (Coleoptera). Boletín del Museo Nacional de Historia Natural (Chile), 41, 125-144. [DOI:10.54830/bmnhn.v41.1988.431]
23. Escobar, S.F. & Chacón, U.P. (2000) Distribución espacial y temporal en un gradiente de sucesión de la fauna de coleópteros coprófagos (Scarabaeinae, Aphodiinae) en un bosque tropical montano, Nariño, Colombia. Revista de Biología Tropical, 48 (4), 961-975.
24. Franklin, J.M., Syphar, A.D. & Regan, H.M. (2016) Global change and terrestrial plant community dynamics. PNAS, 113 (14), 3725-3734. [DOI:10.1073/pnas.1519911113]
25. Gardner, T.A., Barlow, J., Chazdon, R., Ewers, R.M., Harvey, C.A., Peres, C.A. & Sodhi, N.S. (2009) Prospects for tropical forest biodiversity in a human-modified world. Ecology Letters, 12, 561-582. [DOI:10.1111/j.1461-0248.2009.01294.x]
26. Hill, M.O. (1973) Diversity and evenness: A unifying notation and its consequences. Ecology, 54 (2), 427-432. [DOI:10.2307/1934352]
27. Hsieh, T.C., Ma, K.H. & Chao A. (2016) SaiNEXT: An R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7 (12), 1451-1456. [DOI:10.1111/2041-210X.12613]
28. Jerez, V. (2000) Diversidad y patrones de distribución geográfica de insectos coleópteros en ecosistemas desérticos de la región de Antofagasta, Chile. Revista Chilena de Historia Natural, 73, 79-92. [DOI:10.4067/S0716-078X2000000100009]
29. Kistler, R.A. (1995) Influence of temperature on populations within a guild of mesquite bruchids (Coleoptera: Bruchidae). Environmental Entomology, 24 (3), 663-672. [DOI:10.1093/ee/24.3.663]
30. Kingsolver, J.M. (2004) Handbook of the Bruchidae of the United States and Canada (Insecta, Coleoptera). Technical Bulletin no. 1912. Vol. 1. & 2. United States Department of Agriculture. xi + 324 pp. & ii +198 pp.
31. Lanteri, A.A. & Del Río, M.G. (2021) Naupactini (Coleoptera: Curculionidae) species from Argentina and Uruguay. Available from https://biodar.unlp.edu.ar/naupactini [Accessed 15th September 2022].
32. Lassau, S.A., Hochuli, D.F., Cassis, G. & Reid, C.A. (2005) Effects of habitat complexity on forest beetle diversity: Do functional groups respond consistently?. Diversity and Distribution, 11 (1), 73-82. [DOI:10.1111/j.1366-9516.2005.00124.x]
33. Lawton, J.H. (1983) Plant architecture and the diversity of phytophagous insects. Annual Review of Entomology, 28, 23-39. [DOI:10.1146/annurev.en.28.010183.000323]
34. Lescano, M.N., Elizalde, L., Werenkraut, V., Pirk, G.I. & Flores, G.E. (2017) Ant and tenebrionid beetle assemblages in arid lands: Their associations with vegetation types in the Patagonian steppe. Journal of Arid Environments, 138, 51-57. [DOI:10.1016/j.jaridenv.2016.12.002]
35. Li, X., Liu, Y., Duan, M., Yu, Z. & Axmacher, J.C. (2018) Different response patterns of epigaeic spiders and carabid beetles to varying environmental conditions in fields and semi-natural habitats of an intensively cultivated agricultural landscape. Agriculture, Ecosystems & Environment, 264, 54-62. [DOI:10.1016/j.agee.2018.05.005]
36. Lovejoy, T.E. (2010) Climate Change. Chapter 8. In: Sodhi, N.S. & Ehrlich, P.R. (eds) Conservation Biology for All. Oxford University Press, pp. 153-161. [DOI:10.1093/acprof:oso/9780199554232.003.0009]
37. Macagno, H.B., Cruz, I.G., Rodríguez-Artigas, S.M., Corronca, J.A. & Flores, G.E. (2023) Environmental factors determining the diversity of darkling beetles (Coleoptera: Tenebrionidae) in arid, high-altitude environments in Northwestern Argentina. Anais da Academia Brasileira de Ciências, 95 (2), e20201185. [DOI:10.1590/0001-3765202320201185]
38. Magurran, A. (2004) Measuring Biological Diversity. Blackwell Science, Oxford. 256p.
39. Mazía, C.N., Chaneton, E.J. & Kitzberger, T. (2006) Small-scale habitat use and assemblage structure of ground-dwelling beetles in a Patagonian shrub steppe. Journal of Arid Environments, 67, 117-194. [DOI:10.1016/j.jaridenv.2006.02.006]
40. McCune, B. & Mefford, M.J. (2016) PC-ORD. Multivariate analysis of ecological data, versión 7.04. Gleneden Beach: MjM Software Design.
41. Medina-Reyes, G., Jiménez-Sánchez, E., Quezada-García, R., Zaragoza-Caballero, S. & Padilla-Ramírez, J.R. (2021) Distribución vertical y estacional de coleópteros (Coleoptera) en un bosque artificial de un área de conservación afectada por la urbanización en el centro de México. Dugesiana, 28 (1), 13-30. [DOI:10.32870/dugesiana.v28i1.7142]
42. Megías, A.G., Sánchez-Piñero, F. & Hódar, J.A. (2011) Trophic interactions in an arid ecosystem: From decomposers to top-predators. Journal of Arid Environments, 75 (12), 1333-1341. [DOI:10.1016/j.jaridenv.2011.01.010]
43. Morello, J., Matteucci, S.D., Rodríguez, A.F. & Silva, M. (2012) Ecorregiones y complejos ecosistémicos argentinos, 1ed. Buenos Aires: Orientación Gráfica Editora, Buenos Aires, 719 p.
44. Norfolk, O., Abdel-Dayem, M.S. & Gilbert, F. (2012) Rainwater harvesting and arthropod biodiversity within an arid agroecosystem. Agriculture, Ecosystems & Environment, 162, 8-14. [DOI:10.1016/j.agee.2012.08.007]
45. Olson, D.M. & Dinerstein, E. (2002) The Global 200: Priority Ecoregions for Global Conservation. Annals of the Missouri Botanical Garden, 89, 199-224. [DOI:10.2307/3298564]
46. Peck, J.E. (2010) Multivariate analysis for community ecologists: Step-by-Step using PC-ORD. MjM Software Design, Gleneden Beach, Oregon. 162 p.
47. Pérez-Hernández, C.X. & Zaragoza-Caballero, S. (2015) Diversidad alfa y beta de Cantharidae (Coleoptera) en el bosque tropical caducifolio de la vertiente del Pacífico mexicano. Revista Mexicana de Biodiversidad, 86, 771-781. [DOI:10.1016/j.rmb.2015.07.001]
48. Root, R.B. (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecological Monographs, 43, 95-124. [DOI:10.2307/1942161]
49. Russell, E.P. (1989) Enemies Hypothesis: A review of the effect of vegetational diversity on predatory insects and parasitoids. Environmental Entomology 18 (4), 590-599. [DOI:10.1093/ee/18.4.590]
50. Rutten, G., Ensslin, A., Hemp, A. & Fischer, M. (2015) Vertical and horizontal vegetation structure across natural and modified habitat types at Mount Kilimanjaro. PLoS ONE, 10 (9), e0138822. [DOI:10.1371/journal.pone.0138822]
51. Sagi, N. & Hawlena, D. (2021) Arthropods as the engine of nutrient cycling in arid ecosystems. Insects, 12 (8), 726. [DOI:10.3390/insects12080726]
52. Si, X., Baselga, A., Leprieur, F., Song, X. & Ding, P. (2016) Selective extinction drives taxonomic and functional alpha and beta diversities in island bird assemblages. Journal of Animal Ecology, 85 (2), 409-418. [DOI:10.1111/1365-2656.12478]
53. Stein, A., Gerstner, K. & Kreft, H. (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880. [DOI:10.1111/ele.12277]
54. Susilo, F., Indriyati, X. & Hardiwinoto, S. (2009) Diversity and abundance of beetle (Coleoptera) functional groups in a range of land use system in Jambi, Sumatra. Biodiversitas, 10, 195-200. [DOI:10.13057/biodiv/d100406]
55. Szumik, C., Molina, A., Rajmil, J., Aagesen, L., Correa, C., Pereyra, V.V. & Scrocchi, G.J. (2016) El maravilloso mundo de los animales y plantas de la Puna. Alfarcito, Laguna de Guayatayoc, Jujuy, Argentina. Fundación Miguel Lillo, Tucumán, Argentina. 173 p.
56. Tews, J., Brose, U., Grimm, V., Tielbörger, K., Wichmann, M.C. & Schwager, M. (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography, 31, 79-92. [DOI:10.1046/j.0305-0270.2003.00994.x]
57. Wilson, R.J., Gutiérrez, D., Gutiérrez, J. & Monserrat, V.J. (2007) An elevational shift in butterfly species richness and composition accompanying recent climate change. Global Change Biology, 13 9), 1873-1887. [DOI:10.1111/j.1365-2486.2007.01418.x]
58. Zehm, A., Nobis, M. & Schwabe, A. (2003) Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora: Morphology, Distribution, Functional Ecology of Plants, 198 (2), 142-160. [DOI:10.1078/0367-2530-00086]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.