Volume 10, Issue 1 (2024)                   J. Insect Biodivers. Syst 2024, 10(1): 143-159 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hajian M, Sadeghi S, Eslami Barzoki Z, Moradmand M, Gholamhosseini A, Ebrahimi M. Ant diversity and species assemblages along an elevational gradient in the arid area of Central Iran. J. Insect Biodivers. Syst 2024; 10 (1) :143-159
URL: http://jibs.modares.ac.ir/article-36-72952-en.html
1- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
2- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran , ssadeghi@shirazu.ac.ir
3- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
Abstract:   (312 Views)
Ants (Hym., Formicidae) have been recognized as vital components of arid ecosystems. Determining the diversity patterns of ants and the ecological factors behind these patterns is expected to improve our understanding of the functioning of arid ecosystems. Here, we explored patterns of ant species diversity and community composition along an elevational gradient (800 to 2800 m) in the arid area of Central Iran. The elevational gradient in ant diversity and the effects of environmental factors on various indices of ant diversity and species composition were investigated using generalized linear mixed models and variance partitioning analysis. We recorded 34 ant species of 12 genera and 8 tribes from 120 surveyed quadrats. Climate variables were the most important predictors of ant community structure. Indices of ant alpha diversity including Hill numbers and taxonomic diversity increased with elevation. Hill numbers were negatively influenced by temperature, while they were positively affected by precipitation. The observed diversity pattern could be explained by the diversity-productivity hypothesis. In our study area, the maximum primary productivity and consequently the maximum species diversity occurred at high elevations, where precipitation is high and temperature is lower than the extremes that could limit plant productivity. Ant assemblages are expected to become increasingly composed of warm-tolerant species in response to warmer and drier conditions driven by climate change. The distribution of species with lower heat tolerance will be limited to high-elevation areas in Central Iran. These areas could act as refuges for ants and should be considered priorities for conservation
Full-Text [PDF 4759 kb]   (132 Downloads)    

Article Type: Research Article | Subject: Biodiversity
Received: 2023/12/15 | Accepted: 2024/01/13 | Published: 2024/01/19

References
1. Andersen, A.N. (2019) Responses of ant communities to disturbance: Five principles for understanding the disturbance dynamics of a globally dominant faunal group. Journal of Animal Ecology, 88 (3), 350-362. [DOI:10.1111/1365-2656.12907]
2. Barton, K. (2023) Package "MuMIn". Model selection and model averaging based on information criteria. Version, 1.47.5. R Foundation for Statistical Computing: Vienna, Austria.
3. Boulay, R., Aron, S., Cerdá, X., Doums, C., Graham, P., Hefetz, A. & Monnin, T. (2017) Social life in arid environments: the case study of Cataglyphis ants. Annual Review of Entomology, 62 (1), 305-321. [DOI:10.1146/annurev-ento-031616-034941]
4. Brady, N.C., Weil, R.R. & Weil, R.R. (2008) The Nature and Properties of Soils. 13th ed. Prentice Hall Upper Saddle River, NJ. 881 p.
5. Buckley, L.B. & Jetz, W. (2008) Linking global turnover of species and environments. Proceedings of the National Academy of Sciences, 105 (46), 17836-17841. [DOI:10.1073/pnas.0803524105]
6. Bujan, J., Roeder, K.A., de Beurs, K., Weiser, M.D. & Kaspari, M. (2020) Thermal diversity of North American ant communities: Cold tolerance but not heat tolerance tracks ecosystem temperature. Global Ecology and Biogeography, 29 (9), 1486-1494. [DOI:10.1111/geb.13121]
7. Bybee, S., Córdoba-Aguilar, A., Duryea, M.C., Futahashi, R., Hansson, B., Lorenzo-Carballa, M.O., Schilder, R., Stoks, R., Suvorov, A., Svensson, E.I., Swaegers, J., Takahashi, Y., Watts, P.C. & Wellenreuther, M. (2016) Odonata (dragonflies and damselflies) as a bridge between ecology and evolutionary genomics. Frontiers in Zoology, 13 (1), 1-20. [DOI:10.1186/s12983-016-0176-7]
8. Chao, A., Ma, K., Hsieh, T. & Chiu, C. (2016) SpadeR (species-richness prediction and diversity estimation in R): an R package in CRAN. Available from: http://chao.stat.nthu.edu.tw/wordpress/software_download [Accessed at March 2023]
9. Chen, Y., Li, X. & Su, Y. (2007) The ecological significance of ant in revegetated areas in the Tengger Desert. Acta Ecologica Sinica, 27, 1504-1508. [DOI:10.1016/S1872-2032(07)60068-7]
10. Clarke, A. & Gaston, K.J. (2006) Climate, energy and diversity. Proceedings of the Royal Society B: Biological Sciences, 273 (1599), 2257-2266. [DOI:10.1098/rspb.2006.3545]
11. Clarke, K.R. & Warwick, R.M. (1998) A taxonomic distinctness index and its statistical properties. Journal of Applied Ecology, 35 (4), 523-531. [DOI:10.1046/j.1365-2664.1998.3540523.x]
12. Clarke, K.R. & Warwick, R.M. (2001) A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Marine Ecology Progress Series, 216, 265-278. [DOI:10.3354/meps216265]
13. Collingwood, C.A. & Agosti, D. (1996) Formicidae (Insecta: Hymenoptera) of Saudi Arabia (Part 2). Fauna of Saudi Arabia, 15, 300-385.
14. Davidson, D.W. (1977) Species diversity and community organization in desert seed-eating ants. Ecology, 58 (4), 711-724. [DOI:10.2307/1936208]
15. Delsinne, T., Roisin, Y., Herbauts, J. & Leponce, M. (2010) Ant diversity along a wide rainfall gradient in the Paraguayan dry Chaco. Journal of Arid Environments, 74 (10), 1149-1155. [DOI:10.1016/j.jaridenv.2010.03.014]
16. Dröse, W., Podgaiski, L.R., Gossner, M.M., Meyer, S.T., Hermann, J.-M., Leidinger, J., Koch, C., Kollmann, J., Weisser, W.W. & Mendonça Jr, M.d.S. (2021) Passive restoration of subtropical grasslands leads to incomplete recovery of ant communities in early successional stages. Biological Conservation, 264, 109387. [DOI:10.1016/j.biocon.2021.109387]
17. Dunn, R.R., Agosti, D., Andersen, A.N., Arnan, X., Bruhl, C.A., Cerdá, X., Ellison, A.M., Fisher, B.L., Fitzpatrick, M.C. & Gibb, H. (2009) Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters, 12 (4), 324-333. [DOI:10.1111/j.1461-0248.2009.01291.x]
18. Eslami Barzoki, Z., Ebrahimi, M., Kiany, M. & Sadeghi, S. (2020a) Ecological drivers of Odonata beta diversity in arid and semi-arid regions of the Central Plateau of Iran. Insect Conservation and Diversity, 14 (1), 40-51. [DOI:10.1111/icad.12464]
19. Eslami Barzoki, Z., Ebrahimi, M. & Sadeghi, S. (2020b) Odonata diversity and species assemblages in the Northwest Central Plateau of Iran. Journal of Insect Conservation, 24 (3), 459-471. [DOI:10.1007/s10841-019-00211-4]
20. Eslami Barzoki, Z., Ebrahimi, M., Clayton, J. & Sadeghi, S. (2021) Phylogenetic beta diversity of Odonata assemblages in the extreme condition of Central Iran. Journal of Insect Conservation, 25 (1), 175-187. [DOI:10.1007/s10841-020-00290-8]
21. Evans, K.L., Warren, P.H. & Gaston, K.J. (2005) Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews, 80 (1), 1-25. [DOI:10.1017/S1464793104006517]
22. Farajollahzadeh, S., Ramezani, L. & Mohammadi, S. (2023) Biodiversity of ants (Hym. Formicidae) in different urban environments, a case study in Shiraz, Iran. Plant Protection, 2 (46), 61-71.
23. Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 (12), 4302-4315. [DOI:10.1002/joc.5086]
24. Flores, O., Seoane, J., Hevia, V. & Azcárate, F.M. (2018) Spatial patterns of species richness and nestedness in ant assemblages along an elevational gradient in a Mediterranean mountain range. PloS one, 13 (12), e0204787. [DOI:10.1371/journal.pone.0204787]
25. Fotso Kuate, A., Hanna, R., Tindo, M., Nanga, S. & Nagel, P. (2015) Ant diversity in dominant vegetation types of southern Cameroon. Biotropica, 47 (1), 94-100. [DOI:10.1111/btp.12182]
26. Gibb, H., Grossman, B.F., Dickman, C.R., Decker, O. & Wardle, G.M. (2019) Long-term responses of desert ant assemblages to climate. Journal of Animal Ecology, 88 (10), 1549-1563. [DOI:10.1111/1365-2656.13052]
27. Grytnes, J.-A. & McCain, C.M. (2007) Elevational trends in biodiversity. Encyclopedia of Biodiversity, 2, 1-8. [DOI:10.1016/B978-012226865-6/00503-1]
28. Herz, H., Beyschlag, W. & Hölldobler, B. (2007) Herbivory rate of leaf-cutting ants in a tropical moist forest in Panama at the population and ecosystem scales. Biotropica, 39 (4), 482-488. [DOI:10.1111/j.1744-7429.2007.00284.x]
29. Holway, D.A. & Cameron, E.K. (2021) The importance of scavenging in ant invasions. Current Opinion in Insect Science, 46, 39-42. [DOI:10.1016/j.cois.2021.01.007]
30. Jost, L. (2006) Entropy and diversity. Oikos, 113 (2), 363-375. [DOI:10.1111/j.2006.0030-1299.14714.x]
31. Khalili-Moghadam, A., Salata, S. & Borowiec, L. (2021) Three new species of Cataglyphis Foerster, 1850 (Hymenoptera, Formicidae) from Iran. ZooKeys, 1009, 1-28. [DOI:10.3897/zookeys.1009.59205]
32. Kunene, C., Foord, S.H., Scharff, N., Pape, T., Malumbres-Olarte, J. & Munyai, T.C. (2022) Ant diversity declines with increasing elevation along the Udzungwa Mountains, Tanzania. Diversity, 14 (4), 260. [DOI:10.3390/d14040260]
33. Kwon, T.-S., Kim, S.-S. & Chun, J.H. (2014) Pattern of ant diversity in Korea: An empirical test of Rapoport's altitudinal rule. Journal of Asia-Pacific Entomology, 17 (2), 161-167. [DOI:10.1016/j.aspen.2013.12.006]
34. Lach, L., Parr, C. & Abbott, K. (eds) (2010) Ant Ecology. Oxford University Press, Oxford, UK. 402 p. [DOI:10.1093/acprof:oso/9780199544639.001.0001]
35. Li, X., Jia, R., Chen, Y., Huang, L. & Zhang, P. (2011) Association of ant nests with successional stages of biological soil crusts in the Tengger Desert, Northern China. Applied Soil Ecology, 47 (1), 59-66. [DOI:10.1016/j.apsoil.2010.10.010]
36. Liu, C., Dudley, K.L., Xu, Z.H. & Economo, E.P. (2018) Mountain metacommunities: climate and spatial connectivity shape ant diversity in a complex landscape. Ecography, 41 (1), 101-112. [DOI:10.1111/ecog.03067]
37. Longino, J.T. & Colwell, R.K. (2011) Density compensation, species composition, and richness of ants on a neotropical elevational gradient. Ecosphere, 2 (3), 1-20. [DOI:10.1890/ES10-00200.1]
38. Machac, A., Janda, M., Dunn, R.R. & Sanders, N.J. (2011) Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography, 34 (3), 364-371. [DOI:10.1111/j.1600-0587.2010.06629.x]
39. Madani, K., AghaKouchak, A. & Mirchi, A. (2016) Iran's socio-economic drought: challenges of a water-bankrupt nation. Iranian Studies, 49 (6), 997-1016. [DOI:10.1080/00210862.2016.1259286]
40. Marathe, A., Shanker, K., Krishnaswamy, J. & Priyadarsanan, D.R. (2021) Species and functional group composition of ant communities across an elevational gradient in the Eastern Himalaya. Journal of Asia-Pacific Entomology, 24 (4), 1244-1250. [DOI:10.1016/j.aspen.2021.08.009]
41. McCain, C.M. & Grytnes, J.-A. (2010) Elevational gradients in species richness. In: Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Chichester, pp. 1-10. [DOI:10.1002/9780470015902.a0022548]
42. Mohseni, M.R. & Rad, S.P. (2021) The effect of edaphic factors on the distribution and abundance of ants (Hymenoptera: Formicidae) in Iran. Biodiversity Data Journal, 9, 1-25. [DOI:10.3897/BDJ.9.e54843]
43. Moradmand, M. & Yousefi, M. (2022) Ecological niche modelling and climate change in two species groups of huntsman spider genus Eusparassus in the Western Palearctic. Scientific reports, 12 (1), 4138. [DOI:10.1038/s41598-022-08145-9]
44. Munyai, T.C. & Foord, S.H. (2015) Temporal patterns of ant diversity across a mountain with climatically contrasting aspects in the tropics of Africa. PloS one, 10 (3), e0122035. [DOI:10.1371/journal.pone.0122035]
45. Nowrouzi, S., Andersen, A.N., Macfadyen, S., Staunton, K.M., VanDerWal, J. & Robson, S.K. (2016) Ant diversity and distribution along elevation gradients in the Australian wet tropics: the importance of seasonal moisture stability. PloS one, 11 (4), e0153420. [DOI:10.1371/journal.pone.0153420]
46. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R., Simpson, G.L., Solymos, P., Stevens, M.H.H. & Wagner, H. (2013) Package 'vegan'. Community ecology package, version, 2 (9), 1-295.
47. Paknia, O. (2011) Diversity and species composition of ants in arid and semi-arid regions of Iran. Master's Thesis, Faculty of Natural Science of the University of Ulm, Baden-Württemberg, Germany. 158 p.
48. Paknia, O. & Pfeiffer, M. (2011) Steppe versus desert: multi-scale spatial patterns in diversity of ant communities in Iran. Insect Conservation and Diversity, 4 (4), 297-306. [DOI:10.1111/j.1752-4598.2011.00136.x]
49. Paknia, O. & Pfeiffer, M. (2012) Productivity alone does not explain species richness of ants-An example from Central Persian deserts. Journal of Arid Environments, 85, 86-92. [DOI:10.1016/j.jaridenv.2012.06.008]
50. Paknia, O. & Pfeiffer, M. (2014) Niche-based processes and temporal variation of environment drive beta diversity of ants (Hymenoptera: Formicidae) in dryland ecosystems of Iran. Myrmecological News, 20, 15-23.
51. Pérez-Toledo, G.R., Villalobos, F., Silva, R.R., Moreno, C.E., Pie, M.R. & Valenzuela-González, J.E. (2022) Alpha and beta phylogenetic diversities jointly reveal ant community assembly mechanisms along a tropical elevational gradient. Scientific Reports, 12 (1), 1-13. [DOI:10.1038/s41598-022-11739-y]
52. Peterson, A.T. & Soberón, J. (2018) Essential biodiversity variables are not global. Biodiversity and Conservation, 27 (5), 1277-1288. [DOI:10.1007/s10531-017-1479-5]
53. Pfeiffer, M., Chimedregzen, L. & Ulykpan, K. (2003) Community organization and species richness of ants (Hymenoptera/Formicidae) in Mongolia along an ecological gradient from steppe to Gobi desert. Journal of Biogeography, 30 (12), 1921-1935. [DOI:10.1046/j.0305-0270.2003.00977.x]
54. Philpott, S.M. & Armbrecht, I. (2006) Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31 (4), 369-377. [DOI:10.1111/j.1365-2311.2006.00793.x]
55. R Development Core Team (2021) R: A Language and Environment for Statistical Computing [Computer software manual]. Vienna, Austria. URL https://www.r-project.org
56. Rader, R., Bartomeus, I., Garibaldi, L.A., Garratt, M.P., Howlett, B.G., Winfree, R., Cunningham, S.A., Mayfield, M.M., Arthur, A.D. & Andersson, G.K. (2016) Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences, 113 (1), 146-151. [DOI:10.1073/pnas.1517092112]
57. Reymond, A., Purcell, J., Cherix, D., Guisan, A. & Pellissier, L. (2013) Functional diversity decreases with temperature in high elevation ant fauna. Ecological Entomology, 38 (4), 364-373. [DOI:10.1111/een.12027]
58. Ryan, J., Estefan, G. & Rashid, A. (2001) Soil and Plant Analysis Laboratory Manual. International Center for Agricultural Research in the Dry Areas (ICARDA), Alepoo, Syria. x+172 p.
59. Salata, S., Kiyani, H., Minaei, K. & Borowiec, L. (2021) Taxonomic review of the Cataglyphis livida complex (Hymenoptera, Formicidae), with a description of a new species from Iran. ZooKeys, 1010, 117-131. [DOI:10.3897/zookeys.1010.58348]
60. Salyer, A., Bennett, G.W. & Buczkowski, G.A. (2014) Odorous house ants (Tapinoma sessile) as back-seat drivers of localized ant decline in urban habitats. PloS one, 9 (12), e113878. [DOI:10.1371/journal.pone.0113878]
61. Sanders, N.J., Moss, J. & Wagner, D. (2003) Patterns of ant species richness along elevational gradients in an arid ecosystem. Global Ecology and Biogeography, 12 (2), 93-102. [DOI:10.1046/j.1466-822X.2003.00324.x]
62. Sanders, N.J., Lessard, J.P., Fitzpatrick, M.C. & Dunn, R.R. (2007) Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Global Ecology and Biogeography, 16 (5), 640-649. [DOI:10.1111/j.1466-8238.2007.00316.x]
63. Segev, U. (2010) Regional patterns of ant-species richness in an arid region: The importance of climate and biogeography. Journal of Arid Environments, 74 (6), 646-652. [DOI:10.1016/j.jaridenv.2009.11.001]
64. Smith, M.A., Hallwachs, W. & Janzen, D.H. (2014) Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography, 37 (8), 720-731. [DOI:10.1111/j.1600-0587.2013.00631.x]
65. Storch, D., Bohdalková, E. & Okie, J. (2018) The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity-diversity relationship. Ecology Letters, 21 (6), 920-937. [DOI:10.1111/ele.12941]
66. Subedi, I.P. & Budha, P.B. (2020) Diversity and distribution patterns of ants along elevational gradients. Nepalese Journal of Zoology, 4 (1), 44-49. [DOI:10.3126/njz.v4i1.30672]
67. Szewczyk, T. & McCain, C.M. (2016) A systematic review of global drivers of ant elevational diversity. PloS one, 11 (5), e0155404. [DOI:10.1371/journal.pone.0155404]
68. Ward, P. (2000) Broad-scale patterns of diversity in leaf litter ant communities. In: Agosi, D., Majer, J.D., Alonso, L.E. & Schultz, T.R. (eds) Ants-Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington, D.C. pp. 99-121.
69. Ward, P.S., Brady, S.G., Fisher, B.L. & Schultz, T.R. (2015) The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology, 40 (1), 61-81. [DOI:10.1111/syen.12090]
70. Ward, P.S., Blaimer, B.B. & Fisher, B.L. (2016) A revised phylogenetic classification of the ant subfamily Formicinae (Hymenoptera: Formicidae), with resurrection of the genera Colobopsis and Dinomyrmex. Zootaxa, 4072 (3), 343-357. [DOI:10.11646/zootaxa.4072.3.4]
71. Waring, R.H. & Schlesinger, W. (1985) Forest Ecosystems. Analysis at Multiples Scales. Academic Press, San Diego, California. 440 p.
72. Warwick, R. & Clarke, K. (1995) New 'biodiversity 'measures reveal a decrease in taxonomic distinctness with increasing stress. Marine Ecology Progress series, 129, 301-305. [DOI:10.3354/meps129301]
73. Wepfer, P.H., Guénard, B. & Economo, E.P. (2016) Influences of climate and historical land connectivity on ant beta diversity in East Asia. Journal of Biogeography, 43 (12), 2311-2321. [DOI:10.1111/jbi.12762]
74. Wickham, H., Chang, W. & Wickham, M.H. (2016) Package 'ggplot2'. Create elegant data visualisations using the grammar of graphics. Version 2. 1, 1-189.
75. Wolff, A. & Debussche, M. (1999) Ants as seed dispersers in a Mediterranean old-field succession. Oikos, 443-452. [DOI:10.2307/3546423]
76. Xu, Z. & Yang, Z.-L. (2017) Relative impacts of increased greenhouse gas concentrations and land cover change on the surface climate in arid and semi-arid regions of China. Climatic Change, 144 (3), 491-503. [DOI:10.1007/s10584-017-2025-x]
77. Zohary, M. (1973) Geobotanical foundations of the Middle East. Gustav-Fischer Verlag, Stuttgart. 739 p.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.