Volume 8, Issue 4 (2022)                   J. Insect Biodivers. Syst 2022, 8(4): 595-615 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Anand P, Mahima K, Shibu Vardhanan Y. Caste-specific quantitative genetics and phylogenetic signal analysis revealed the morphological adaptation of Asian weaver ant, Oecophylla smaragdina (Hymenoptera, Formicidae). J. Insect Biodivers. Syst 2022; 8 (4) :595-615
URL: http://jibs.modares.ac.ir/article-36-61610-en.html
1- Biochemistry and Toxicology Division, Department of Zoology, University of Calicut, Kerala, India 673 635. , anandpp633@gmail.com
2- Biochemistry and Toxicology Division, Department of Zoology, University of Calicut, Kerala, India 673 635.
Abstract:   (1646 Views)
View on Scopus

Insect caste development and their morphological divergence are not yet studied well, especially in ants. However, the role of developmental and genetic integration in evolution is contentious. In our study, we tried to reveal the quantitative genetics selection responses, phylogenetic signal, and evolutionary origin of weaver ant female castes (queen, major and minor). The widening and lengthening of the head region, as well as the well-developed mandibular process, are the major heritable characteristics found in the major worker ants. We hypothesized that these conserved and heritable characteristics may help the major worker ants for defense, foraging purposes and other nest-building function aspects. However, in the case of minor worker, small heads and the reduced mandibular process are the more heritable characteristics. Compared to worker ants, in queen, the highly heritable and conserved morphological character is well-developed thoracic regions and large-sized abdomen. It is interesting to note that there is no detectable phylogenetic signal across the female cast of the Asian weaver ants, which suggests that the caste development and morphological divergence are environmentally modulated not evolutionary conserved. From this study, we concluded that caste-specific morphological shape and size are highly conserved traits and these traits are modulated by their niche preferences.
Full-Text [PDF 37066 kb]   (654 Downloads)    

Article Type: Research Article | Subject: Systematics/Hymenoptera
Received: 2022/05/18 | Accepted: 2022/09/4 | Published: 2022/10/8

References
1. Anand, P.P. & Shibu Vardhanan, Y. (2020) Computational modelling of wet adhesive mussel foot proteins (Bivalvia): Insights into the evolutionary convolution in diverse perspectives. Scientific Reports, 10, 2612. [DOI:10.1038/s41598-020-59169-y]
2. Anand, P.P., Seena, S., Jinsha, P. & Shibu Vardhanan, Y. (2022) Detection of geographical specific plasticity and the effect of natural selection pressure on the wing size and shape of Bactrocera dorsalis (Diptera: Tephritidae). Biologia, 77 (4), 1347-1371. [DOI:10.1007/s11756-022-01059-x]
3. Azuma, N., Kikuchi, T., Ogata, K. & Higashi, S. (2002) Molecular phylogeny among local populations of weaver ant Oecophylla smaragdina. Zoological Science, 19, 1321-1328. [DOI:10.2108/zsj.19.1321]
4. Babu, M.J., Ankolekar, S.M. & Rajashekhar, K.P. (2011) Castes of the weaver ant Oecophylla smaragdina (Fabricius) differ in the organization of sensilla on their antennae and mouthparts. Current Science, 101 (6), 755-764.
5. Begin, M. & Rohlf, D.A. (2004) From micro-macroevolution through quantitative genetic variation: positive evidence from field crickets. Evolution, 58, 2287-2304. [DOI:10.1111/j.0014-3820.2004.tb01604.x]
6. Bingham, C.T. (1903). The fauna of British India, Including Ceylon and Burma. Hymenoptera, Volume 2, Ants and Cuckoo wasps. Taylor & Francis, London. 506 p. [DOI:10.5962/bhl.title.100738]
7. Blaimer, B.B., Brady, S.G., Schultz, T.R., Llyod, M.W., Fisher, B.L. & Ward, P.S (2015) Phylogenomic methods outperform traditional multi-locus approaches in resolving deep evolutionary history: a case study of formicine ants. BMC Evolutionary Biology, 15, 271. [DOI:10.1186/s12862-015-0552-5]
8. Bolton, B., Alpert, G., Ward, P.S. & Naskrecki, P. (2007) Bolton's Catalogue of Ants of the World: 1758-2005. Harvard University Press, Cambridge, MA, CD-ROM.
9. Cheverud, J.M. (1984) Quantitative genetics and developmental constraints on evolution by selection. Journal of Theoretical Biology, 110, 155-171. [DOI:10.1016/S0022-5193(84)80050-8]
10. Clyde, W.C. & Gingerich, P.D. (1994) Rates of evolution in dentition of early Eocene Cantius: Comparison of size and shape. Paleobiology, 20, 506-522. [DOI:10.1017/S0094837300012963]
11. Cole, A.C. Jr., & Jones, J.W. (1948) A study of the weaver ant, Oecophylla smaragdina (Fab.). American Midland Naturalist, 39, 641-651. [DOI:10.2307/2421529]
12. Dlussky, G.M., Wappler, T. & Wedmann, S. (2008) New middle Eocene formicide species from Germany and the evolution of weaver ants. Acta Palaeontologica Polonica, 53 (4), 615-26. [DOI:10.4202/app.2008.0406]
13. Dzeverin, I. (2008) The stasis and possible patterns of selection in evolution of a group of related species from the bat genus Myotis (Chiroptera, Vespertillionidae). Journal Mammalian Evolution, 15, 123-142. [DOI:10.1007/s10914-007-9071-5]
14. Gidaszewski, N.A., Baylac, M. & Klingenberg, C.P. (2009) Evolution of sexual dimorphism of wing in the Drosophila melanogaster subgroup. BMC Evolutionary Biology, 9, 110. [DOI:10.1186/1471-2148-9-110]
15. Hedges, S.B., Marin, J., Suleski, M., Paymer, M. & Kumar, S. (2015) Tree of life reveals clock-like speciation and diversification. Molecular Biology Evolution, 32 (4), 835-845. https://doi.org/10.1093/molbev/msv037 [DOI:10.1093/molbey/msv037]
16. Holldobler, B. & Wilson, E.O. (1977) Weaver ants- social establishment and maintenance of territory. Science, 195, 900-902. [DOI:10.1126/science.841318]
17. Hunt, G. (2007) The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. PNAS, USA, 104, 18404-18408. [DOI:10.1073/pnas.0704088104]
18. Janicki, J., Narula, N., Ziegler, M. & Guenard, B.E.E.P. (2016) Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. Ecological Informatics, 32, 185-193. [DOI:10.1016/j.ecoinf.2016.02.006]
19. Karthika, K., Anand, P.P., Seena, S. & Shibu Vardhanan, Y. (2021) Wing phenotypic plasticity, quantitative genetics, modularity, and phylogenetic signal analysis revealed the niche partitioning in two fruit fly species, Bactrocera dorsalis and Zeugodacus cucurbitae. International Journal of Tropical Insect Science, 42, 1487-1504. [DOI:10.1007/s42690-021-00668-4]
20. Klingenberg, C.P. (2003) Developmental instability as a research tool: using patterns of fluctuating symmetry to infer the developmental origins of morphological integration. In: Polak, M. (ed.) Developmental Instability Causes and Consequences. Oxford University Press, New York, pp. 427-442.
21. Klingenberg, C.P. (2010) Evolution and development of shape: integrating quantitative approaches. Nature Review Genetics, 11, 623-635. [DOI:10.1038/nrg2829]
22. Klingenberg, C.P. (2011) MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11, 353-357. [DOI:10.1111/j.1755-0998.2010.02924.x]
23. Klingenberg, C.P. & Gidaszewski, N.A. (2010) Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology, 59, 245-261. [DOI:10.1093/sysbio/syp106]
24. Klingenberg, C.P. & Leamy, L.J. (2001a) Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology, 54, 678-688. https://doi.org/10.1080/10635150590947258 [DOI:10.1080/ 10635150590947258]
25. Klingenberg, C.P. & Leamy, L.J. (2001b) Quantitative genetics of geometric shape in the mouse mandible. Evolution, 55, 2342-2352. [DOI:10.1111/j.0014-3820.2001.tb00747.x]
26. Klingenberg, C.P. & Monteiro, L.R. (2005) Distances and directions in multidimensional shape spaces: implications for morphometric applications. Systematic Biology, 54, 678-688. [DOI:10.1080/10635150590947258]
27. Klingenberg, C.P., Debat, V. & Roff, D.A. (2010) Quantitative genetics of shape in cricket wings: developmental integration in a functional structure. Evolution, 64, 2935-2951. [DOI:10.1111/j.1558-5646.2010.01030.x]
28. Klingenberg, C.P., Leamy, L.J., Routman, E.J. & Cheverud, J.M. (2001) Genetic architecture of mandible shape in mice: effects of quantitative trait loci analyzed by geometric morphometric. Genetics, 157, 785-802. [DOI:10.1093/genetics/157.2.785]
29. Konishi, M. & Ito, Y. (1973) Early entomology in east Asia. In: Smith, R.F., Mittler, T.E. & Smith, C.N. (eds.) History of Entomology. Annual Review Inc, Palo Alto, CA., pp. 1-20.
30. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: molecular evolutionary genetic analysis across computing platforms. Molecular Biology and Evolution, 35, 1547-1579. https://doi.org/10.1093/molbev/msy096 [DOI:10.1093/ molbev/msy096]
31. Kumar, S., Suleski, M., Craig, J.E., Kasprowicz, A.E., Sanderford, M., Li, M., Stecher, G. & Hedges, S.B. (2022) TimeTree 5: An expanded resource for species divergence times. Molecular Biology and Evolution, 39 (8), msac174. [DOI:10.1093/molbev/msac174]
32. Lande, R. (1979) Quantitative genetic analysis of multivariate evolution, applied to brain: body size allometry. Evolution, 33, 402-416. [DOI:10.2307/2407630]
33. Lande, R. & Arnold, S.J. (1983) The measurement of selection on correlated characters. Evolution, 37, 1210-1226. [DOI:10.1111/j.1558-5646.1983.tb00236.x]
34. Londe, S., Monnin, T., Cornette, R., Debat, V., Fisher, B.L. & Molet, M. (2015) Phenotypic plasticity and modularity allow for the production of novel mosaic phenotypes in ants. EvoDevo, 6, 36. [DOI:10.1186/s13227-015-0031-5]
35. Lynch, M. & Walsh, B. (1998) Genetics and Analysis of Quantitative Traits. Sinauer, Sunderland, MA. 980 p.
36. Maddison, W.P. (1991) Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology, 40, 304-314. [DOI:10.2307/2992324]
37. Maddison, W.P. & Maddison, D.R. (2016) Mesquite: a modular system for evolutionary analysis. V 3.10. https://mesquiteproject.org
38. Mahima, K.V., Anand, P.P., Seena, S., Shameema, K., Manogem, E.M. & Shibu Vardhanan, Y. (2021) Caste-specific phenotypic plasticity of Asian weaver ants: Revealing the allometric and non-allometric component of female caste system of Oecophylla smaragdina (Hymenoptera: Formicidae) by using geometric morphometrics. Sociobiology, 68 (2), e5941. [DOI:10.13102/sociobiology.v68i2.5941]
39. Marroig, G. & Cheverud, J.M. (2005) Size as a line of least evolutionary resistance: diet and adaptive morphological radiation in new world monkeys. Evolution, 59, 1128-1142. [DOI:10.1111/j.0014-3820.2005.tb01049.x]
40. Marroig, G. & Cheverud, J.M. (2010) Size as a line of least resistance II: direct selection on size or correlated response due to constraints?. Evolution, 64, 1470-1488. [DOI:10.1111/j.1558-5646.2009.00920.x]
41. Mertl, A.L. & Traniello, J.F.A. (2009) Behavioral evolution in the major worker subcaste of twignesting Pheidole (Hymenoptera: Formicidae): Does morphological specialization influence task plasticity?. Behavioral Ecology and Sociobiology, 63, 1411-1426. [DOI:10.1007/s00265-009-0797-3]
42. Moller, A.P. & Swaddle, J.P. (1997) Asymmetry, Developmental Stability, and Evolution. Oxford University Press, Oxford. 304 p.
43. Munoz, F.M., Carreira, V.P., Abadias, N.M., Ortiz, V., Jose, R.G. & Soto, I.M. (2016) Drosophila wing modularity revisited through a quantitative genetic approach. Evolution, 70 (7), 1530-1541. [DOI:10.1111/evo.12975]
44. Pie, M.R. & Tscha, M.K. (2013) Size and shape in the evolution of ant worker morphology. PeerJ, 1, 205. [DOI:10.7717/peerj.205]
45. Powell, S., Price, L.S. & Kronauer, J.C. (2020) Trait evolution is reversible, repeatable, and decoupled in the soldier caste of turtle ants. PNAS, 117 (2), 6608-6615. [DOI:10.1073/pnas.1913750117]
46. Rohlf, D.A. (1997) Evolutionary Quantitative Genetics. Chapman and Hall, New York. 510 p.
47. Rohlf, F.J. (2015) The tps series of software. Hystrix, The Italian Journal of Mammalogy, 26, 9-12. [DOI:10.4404/hystrix-26.1-11264]
48. Smith, T.B. (1987) Bill size polymorphism and intraspecific niche utilization in an African finch. Nature, 329, 717-719. [DOI:10.1038/329717a0]
49. Stanley, S.M. (1979) Macroevolution, Pattern and Process. W.H. Freeman, San Francisco. xi + 332 p.
50. Stanley, S.M. & Yang, X. (1987) Approximate evolutionary stasis for bivalve morphology over millions of years: a multivariate, multilineage study. Paleobiology, 13, 113-139. [DOI:10.1017/S009483730000868X]
51. Trible, W. & Kronauer, D.J. (2017) Caste development and evolution in ants: it's all about size. Journal of Experimental Biology, 220 (1), 53-62. [DOI:10.1242/jeb.145292]
52. Ward, P.S. (2014) The phylogeny and evolution of ants. Annual Review of Ecology Evolution Systematics, 45, 23-43. [DOI:10.1146/annurev-ecolsys-120213-091824]
53. Wetterer, J.K. (2017) Geographical distribution of the weaver ant Oecophylla smaragdina. Asian Myrmecology, 9, e009004. [DOI:10.20362/am.009004]
54. Wheeler, D.E. (1991) The developmental basis of worker caste polymorphism in ants. American Naturalist, 138 (5), 1218-238. [DOI:10.1086/285279]
55. Wilson, E.O. (1953) The origin and evolution of polymorphism in ants. Quarterly Review of Biology, 28, 136-156. [DOI:10.1086/399512]
56. Wood, A.R., Zelditch, M.L., Rountrey, A.N., Eiting, T.P., Sheets, H.D. & Gingerich, P.D. (2007) Multivariate stasis in the dental morphology of the Paleocene-Eocene condylarth Ectocion. Paleobiology, 33, 248-260. [DOI:10.1666/06048.1]
57. Žikić, V., Stanković, S.S., Petrović, A., Ilić Milošević, M., Tomanović, Ž., Klingenberg, C.P. & Ivanović, A. (2017) Evolutionary relationships of wing venation and wing size and shape in Aphdiinae (Hymenoptera: Braconidae). Organism Diversity & Evolution, 17, 607-617. [DOI:10.1007/s13127-017-0338-2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.