Volume 9, Issue 1 (2023)                   J. Insect Biodivers. Syst 2023, 9(1): 115-138 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Arya M K, Chandra H, Verma A. Spatial insect diversity paradigms and related ecosystem services in the protected Nandhour Landscape of India. J. Insect Biodivers. Syst 2023; 9 (1) :115-138
URL: http://jibs.modares.ac.ir/article-36-64605-en.html
1- Department of Zoology, D.S.B. Campus, Kumaun University, Nainital-263002, Uttarakhand, India
2- Department of Zoology, D.S.B. Campus, Kumaun University, Nainital-263002, Uttarakhand, India , hemchandra5593@gmail.com
3- Department of Zoology, Government Post Graduate College, Berinag-262531, Uttarakhand, India
Abstract:   (1184 Views)
The Nandhour Landscape located in an eco-fragile biodiversity rich Terai Arc Landscape of India is protected in the form of a wildlife sanctuary and is least explored in terms of insect diversity and functions. Therefore, this study aimed to provide baseline information on the biodiversity of insects and their ecological functions in tropical to sub-tropical forest ecosystems which is important for the successful long-term provisioning of ecosystem functions and services in the protected landscape. Using standardized sampling techniques, the present study examined the structure and composition of insect assemblages in terms of their comparative diversity and richness across a range of habitat types in the Nandhour Landscape. Besides, the present study also evaluated the ecological significance of insect fauna. A total of 230 insect species belonging to 47 families and nine orders were recorded from various habitats and Lepidoptera was the most dominant insect order in terms of both richness and abundance, followed by Coleoptera, Hymenoptera, Odonata and others. Species diversity and richness were the highest in dense moist and open dry riverine forests, while the least in plantation forest and agricultural land. The heterogeneous structure and composition substantiated the importance of overall spatial heterogeneity and natural forests in sustaining and maintaining the rich insect diversity. Conservation of insect diversity is highly important as several species provide crucial ecosystem services and aid in the functioning of various ecologically fragile habitats of the landscape.
Full-Text [PDF 2417 kb]   (531 Downloads)    

Article Type: Research Article | Subject: Biodiversity
Received: 2022/10/5 | Accepted: 2022/12/22 | Published: 2023/01/1

References
1. Albert, G., Gallegos, S.C., Greig, K.A., Hanisch, M., Fuente, D.L., Fost, S., Maier, S.D., Sarathchandra, C., Phillips, H.R.P. & Kambach, S. (2021) The conservation value of forests and tree plantations for beetle (Coleoptera) communities: A global meta-analysis. Forest Ecology and Management, 491, 119201. [DOI:10.1016/j.foreco.2021.119201]
2. Ameixa, O.M.C.C., Soares, A.O., Soares, A.M.V.M. & Lillebo, A.I. (2018) Ecosystem services provides by the little things that run the world. In: Bulent, S. & Oscar, G. (eds) Selected Studies in Biodiversity. Intechopen, Londin, pp. 267-302. [DOI:10.5772/intechopen.74847]
3. An, J. & Choi, S. (2021) Butterflies as an indicator group of riparian ecosystem assessment. Journal of Asia-Pacific Entomology, 24, 195-200. [DOI:10.1016/j.aspen.2020.12.017]
4. Anonymous (2006) The Wildlife (Protection) Act, 1972. Natraj Publishers, Dehradun, India. 291 p.
5. Archaux, F., Lorel, C. & Villemey, A. (2018) Landscape drivers of butterfly and burnet moth diversity in lowland rural areas. Landscape Ecology, 33, 1725-1739. [DOI:10.1007/s10980-018-0697-x]
6. Arya, M.K., Dayakrishna & Verma, A. (2020) Patterns in distribution of butterfly assemblages at different habitats of Corbett Tiger Reserve, Northern India. Tropical Ecology, 61, 180-186. [DOI:10.1007/s42965-020-00077-7]
7. Balakrishnan, S., Srinivasan, M. & Mohanraj, J. (2014) Diversity of some insect fauna in different coastal habitats of Tamil Nadu, southeast coast of India. Journal of Asia-Pacific Biodiversity, 7, 408-414. [DOI:10.1016/j.japb.2014.10.010]
8. Barton, P.S., Manning, A.D., Gibb, H., Lindenmayer, D.B. & Cunningham, S.A. (2009) Conserving ground-dwelling beetles in an endangered woodland community: Multi-scale habitat effects on assemblage diversity. Biological Conservation, 142 (8), 1701-1709. [DOI:10.1016/j.biocon.2009.03.005]
9. Beeson, C.F.C. (1941) The Ecology and Control of the Forest Insects of India and the Neighbouring Countries. Manager of Publication, Delhi. 1007 p.
10. Beiroz, W., Slade, E.M., Barlow, J., Silveira, J.M. Louzada, J. & Sayer, E. (2017) Dung beetle community dynamics in undisturbed tropical forests: Implications for ecological evaluations of land-use change. Insect Conservation and Diversity, 10, 94-106. [DOI:10.1111/icad.12206]
11. Beiroz, W., Sayer, E., Slade, S.M., Audino, L., Braga, R.F., Louzada, J. & Barlow, J. (2018) Spatial and temporal shifts in functional and taxonomic diversity of dung beetle in a human-modified tropical forest landscape. Ecological Indicators, 95, 418-526. [DOI:10.1016/j.ecolind.2018.07.062]
12. Bengtsson, J., Ahnstrom, J. & Weibull, A.C. (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. Journal of Applied Ecology, 42 (2), 261-269. [DOI:10.1111/j.1365-2664.2005.01005.x]
13. Bergman, K.O., Dániel-Ferreira, J., Milberg, P., Ockinger, E. & Westerberg, L. (2018) Butterflies in Swedish grasslands benefit from forest and respond to landscape composition at different spatial scales. Landscape Ecology, 33, 2189-2204. [DOI:10.1007/s10980-018-0732-y]
14. Bhargav, V., Uniyal, V.P. & Sivakumar, K. (2009) Distinctive patterns in habitat association and distribution of tiger beetles in the Shivalik landscape of North Western India. Journal of Insect Conservation, 13, 459-473. [DOI:10.1007/s10841-008-9193-y]
15. Brühl, C.A. & Zaller, J.G. (2019) Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Frontiers in Environmental Science, 7, 177. [DOI:10.3389/fenvs.2019.00177]
16. Chanchani, P., Lamichhane, B.R., Malla, S., Maurya, K., Bista, A., Warrier, R., Nair, S., Almeida, M., Ravi, R., Sharma, R., Dhakal, M., Yadav, S.P., Thapa, M., Jnawali, S.R., Pradhan, N.M.B., Subedi, N., Thapa, G.J., Yadav, H., Jhala, Y.V., Qureshi, Q., Vattakaven, J. & Borah, J. (2014) Tigers of the transboundary Terai Arc Landscape: Status, distribution and movement in the Terai of India and Nepal. National Tiger Conservation Authority, Government of India, and Department of National Park and Wildlife Conservation, Government of Nepal. 82 p.
17. Chandra, K. (2011) Insect fauna of states and :union: territories in India. ENVIS Bulletin: Wildlife & Protected Areas, 14 (1), 189-218.
18. Chung, A.Y.C., Chew, S.K.F., Majapun, R. & Nilus, R. (2013) Insect diversity of Bukit Hampuan Forest Reserve, Sabah, Malaysia. Journal of Threatened Taxa, 5 (10), 4461-4473. [DOI:10.11609/JoTT.o3243.4461-73]
19. Chung, A.Y.C., Paul, V. & Bosuang, S. (2020) The insect fauna of Tenompok Forest Reserve in Sabah, Malaysia. Journal of Threatened Taxa, 12 (4), 15443-15459. https://doi.org/10.11609/jott.5588.12.4.15443-15459 [DOI:10.11609/jot.5588.12.4.15443-15459]
20. Dangles, O. & Casas, J. (2019) Ecosystem services provided by insects for achieving sustainable development goals. Ecosystem Services, 35, 109-115. [DOI:10.1016/j.ecoser.2018.12.002]
21. Davis, A.J., Holloway, J.D., Huijbregts, H., Krikken, J., Kirk-Spriggs, A.H. & Sutton, S.L. (2001) Dung beetles as indicators of change in the forests of northern Borneo. Journal of Applied Ecology, 38, 593-616. [DOI:10.1046/j.1365-2664.2001.00619.x]
22. Geldmann, J., Manica, A., Burgess, N.D., Coa, L. & Balmford, A. (2019) A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proceedings of the National Academy of Sciences of the United States of America, 116 (46), 23209-23215. [DOI:10.1073/pnas.1908221116]
23. Golfieri, B., Hardersen, S., Maiolini, B. & Surian, N. (2016) Odonates as indicators of the ecological integrity of the river corridor: Development and application of the Odonate River Index (ORI) in northern Italy. Ecological Indicators, 61 (2), 234-247. [DOI:10.1016/j.ecolind.2015.09.022]
24. Gómez-Cifuentes, A., Vespa, N., Semmartín, M. & Zurita, G. (2020) Canopy cover is a key factor to preserve the ecological functions of dung beetles in the southern Atlantic Forest. Applied Soil Ecology, 154, 103652. [DOI:10.1016/j.apsoil.2020.103652]
25. Gotelli, N.J. & Colwell, R.K. (2001) Quantifying biodiversity: Procedure and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379-391. [DOI:10.1046/j.1461-0248.2001.00230.x]
26. Habel, J.C., Rasche, R., Schneider, U.A., Engler, J.O., Schmid, E., Rodder, D., Meyer, S.T., Trapp, N., Diego, R.S., Eggermont, H., Lens, L. & Stork, N.E. (2019) Final countdown for biodiversity hotspots. Conservation Letters, 12, e12668. [DOI:10.1111/conl.12668]
27. Habel, J.C., Teucher, M., Gros, P. Schmitt, T. & Ulrich, W. (2021) Land use and climate change affects butterfly diversity across northern Austria. Landscape Ecology, 36, 1741-1754. [DOI:10.1007/s10980-021-01242-6]
28. Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwain, H., Stenmans, W., Muller, A., Sumser, H., Horren, T., Goulson, D. & Kroon, H. (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE, 2 (10), e0185809. [DOI:10.1371/journal.pone.0185809]
29. Hammer, Ø., Harper, D.A.T. & Ryan, P.D. (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1), 1-9.
30. Harvey, J.A., Heinen, R., Armbrecht, I., Basset, Y., Baxter-Gilbert, J.H., Bezemer, T.M., Böhm, M., Bommarco, R., Borges, P.A.V., Cardoso, P., Clausnitzer, V., Cornelisse, T., Crone, E.E., Dicke, M., Dijkstra, K.B., Dyer, L., Ellers, J., Fartmann, T., Forister, M.L., Furlong, M.J., Garcia-Aguayo, A., Gerlach, J., Gols, R., Goulson, D., Habel, J., Haddad, N.M., Hallmann, C.A., Henriques, S., Herberstein, M.E., Hochkirch, A., Hughes, A.C., Jepsen, S., Jones, T.H., Kaydan, B.M., Kleijn, D., Klein, A., Latty, T., Leather, S.R., Lewis, S.M., Lister, B.C., Losey, J.E., Lowe, E.C., Macadam, C.R., Montoya-Lerma, J., Nagano, C.D., Ogan, S., Orr, M.C., Painting, C.J., Pham, T., Potts, S.G., Rauf, A., Roslin, T.L., Samways, M.J., Sanchez-Bayo, F., Sar, S.A., Schultz, C.B., Soares, A.O., Thancharoen, A., Tscharntke, T., Tylianakis, J.M., Umbers, K.D.L., Vet, L.E.M., Visser, M.E., Vujic, A., Wagner, D.L., Wallis De Vries, M.F., Westphal, C., White, T.E., Wilkins, V.L., Williams, P.H., Wyckhuys, K.A.G., Zhu, Z. & Kroon, H. (2020) International scientists formulate a roadmap for insect conservation and recovery. Nature Ecology and Evolution, 4, 174-176. [DOI:10.1038/s41559-019-1079-8]
31. Irengbam, M., Dobriyal, P., Hussain, S.A. & Badola, R. (2017) Balancing conservation and development in Nandhaur Wildlife Sanctuary, Uttarakhand, India. Current Science, 112 (6), 1187-1196. [DOI:10.18520/cs/v112/i06/1187-1196]
32. Joshi, P.C., Kumar, K. & Arya, M. (2008) Assessment of insect diversity along an altitudinal gradient in Pindari forests of Western Himalaya, India. Journal of Asia-Pacific Entomology, 11, 5-11. [DOI:10.1016/j.aspen.2008.02.002]
33. Kehimkar, I. (2016) Butterflies of India. Bombay Natural History Society, Mumbai. 505 p.
34. Kirmse, S. & Chaboo, C.S. (2020) Flowers are essential to maintain high beetle diversity (Coleoptera) in a Neotropical rainforest canopy. Journal of Natural History, 54 (25-26), 1661-1696. [DOI:10.1080/00222933.2020.1811414]
35. Kumar, P. (2008) Handbook on common butterflies of Uttarakhand. Zoological Survey of India, Kolkata. 136 p.
36. Losey, J.E. & Vaughan, M. (2006) The economic value of ecological services provided by Insects. Bio-Science, 56, 311-323. [DOI:10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2]
37. Losey, J.E. & Vaughan, M. (2008) Conserving the ecological services provided by insects. American Entomologist, 54, 113-115. [DOI:10.1093/ae/54.2.113]
38. Magurran, A.E. (2004) Measuring biological diversity. Blackwell Publishing Company. Oxford. 256 p.
39. Margalef, R. (1972) Homage to Evelyn Hutchinson, or why is there an upper limit to diversity? Transactions of the Connecticut Academy of Arts and Sciences, 44, 211-235.
40. May, M.L. (2019) Odonata: who they are and what they have done for us lately: classification and ecosystem services of dragonflies. Insects, 10 (3), 1-17. [DOI:10.3390/insects10030062]
41. Medina, M.N., Cabras, A., Ramillano, H. & Villanueva, R.J. (2020) Tiger beetles (Coleoptera: Cicindelinae) of Davao Region, Mindanao, Philippines. Journal of Threatened Taxa, 12 (4), 15460-15467. [DOI:10.11609/jott.5102.12.4.15460-15467]
42. Mehra, S. (2015) Management Plan of Nandhaur Wildlife Sanctuary (2015-2016 to 2024-2025). Western Circle Office, Forest Department, Haldwani, Uttarakhand, India. 256 p.
43. Melin, A., Rouget, M., Midgley, J.J. & Donaldson, J.S. (2014) Pollination ecosystem services in South African agricultural systems. South African Journal of Science, 110 (11-12), 1-9. [DOI:10.1590/sajs.2014/20140078]
44. Mone, S., Kusha, K.M., Jathanna, D., Ali, M. & Goel, A. (2014) Comparison of insect biodiversity between organic and conventional plantations in Kodagu, Karnataka, India. Journal of Threatened Taxa, 6 (9), 6186-6194. [DOI:10.11609/JoTT.o3778.6186-94]
45. Najar, I.A. & Bashir, A. (2016) Insect diversity of Doodhpathri (Budgam), Jammu and Kashmir, India. International Journal of Fauna and Biological Studies, 3 (6), 28-32.
46. Nichols, E., Spector, S., Louzada, J., Larsen, T., Amezquita, S. & Fevilla, M.E. (2008) Ecological functions and ecosystem services provided by Scarabaeinae dung beetles. Biological Conservation, 141 (6), 1461-1474. [DOI:10.1016/j.biocon.2008.04.011]
47. Noriega, A., Hortal, J., Azcárate, F.M., Berg, M.P., Bonada, N. et al (2018) Research trends in ecosystem services provided by insects. Basic and Applied Ecology, 26, 8-23. [DOI:10.1016/j.baae.2017.09.006]
48. Pant, M., Negi, G.C. & Kumar, P. (2020) Soil macrofauna diversity and population dynamics in Indian Himalayan agroecosystems. Soil Research, 58, 636-650. [DOI:10.1071/SR18104]
49. Park, S.J., Kwon, H., Park, S.K., Kim, D.S. & Park, D.S. (2013) Comparative insect faunas between Ganghwado and Six others Islands of West Coastal in Incheon, Korea. Journal of Asia-Pacific Biodiversity, 6 (2), 197-219. [DOI:10.7229/jkn.2013.6.2.197]
50. Pedley, S.M. & Dolman, P.M. (2020) Arthropod traits and assemblages differ between core patches, transient stepping-stones and landscape corridors. Landscape Ecology, 35, 937-952. [DOI:10.1007/s10980-020-00991-0]
51. Phauk, S., Rim, S., Keath, S., Keum, T., Doeurk, B. & Hot, C. (2019) Preliminary research on insect diversity at Kulen Promtep Wildlife Sanctuary, Cambodia. Cambodia Journal of Basic and Applied Research, 1 (1), 16-48.
52. Pollard, E. (1977) A method for assessing changes in the abundance of butterflies. Biological Conservation, 12 (2), 115-134. [DOI:10.1016/0006-3207(77)90065-9]
53. Pollard, E. & Yates, T.J. (1993) Monitoring Butterflies for Ecology and Conservation. Chapman and Hall, London,
54. Rodríguez-Echeverry, J., Echeverría, C., Oyarzún, C. & Morales, L. (2018) Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landscape Ecology, 33, 439-453. [DOI:10.1007/s10980-018-0612-5]
55. Rumbos, C.I. & Athanassiou, C.G. (2021) Insects as food and feed: if you can't beat them, eat them! - To the magnificent seven and beyond. Journal of Insect Science, 21 (2), 9. [DOI:10.1093/jisesa/ieab019]
56. Salomão, R.P., Gonçalves, L.K.S., de Morais, R.F. & Lima, L.C.R. (2019) Dung beetles (Coleoptera: Scarabaeinae) in a mosaic habitat at the ecotone between two savanna ecosystems in the Neotropical region. International Journal of Tropical Insect Science, 39, 249-256. [DOI:10.1007/s42690-019-00031-8]
57. Samways, J.M. (2005) Insect Diversity Conservation. Cambridge University Press, New York USA. 342 p. [DOI:10.1017/CBO9780511614163]
58. Sánchez-Bayo, F. & Wyckhuys, K.A. (2019) Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation, 232, 8-27. [DOI:10.1016/j.biocon.2019.01.020]
59. Sarmiento-Garcés, R. & Hernández, M.I.M. (2021) A decrease in taxonomic and functional diversity of dung beetles impacts the ecosystem function of manure removal in altered subtropical habitats. PLoS ONE, 16 (1), e0244783. [DOI:10.1371/journal.pone.0244783]
60. Schowalter, T.D., Noriega, J.A. & Tscharntke, T. (2018) Insect effects on ecosystem services - introduction. Basic and Applied Ecology, 26, 1-7. [DOI:10.1016/j.baae.2017.09.011]
61. Seibold, S., Gossner, M.M., Simons, N.K., Blüthgen, N., Müller, J., Ambarlı, D., Ammer, C., Bauhus, J., Fischer, M., Habel, J.C., Linsenmair, K.E., Nauss, T., Penone, C., Prati, D., Schall, P., Schulze, E., Vogt, J., Wöllauer, S. & Weisser, W.W. (2019) Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature, 574, 671-674. [DOI:10.1038/s41586-019-1684-3]
62. Shannon, C.E. & Weaver, W. (1949) The Mathematical Theory of Communication. The University of Illinois Press, Illinois. 117 p.
63. Sharma, K., Acharya, B.K., Sharma, G., Valente, D., Pasimeni, M.R., Petrosillo, I. & Selvan, T. (2020) Land use effect on butterfly alpha and beta diversity in the Eastern Himalaya, India. Ecological Indicators, 110, 105605. [DOI:10.1016/j.ecolind.2019.105605]
64. Simpson, E. (1949) Measurement of diversity. Nature, 163, 688. [DOI:10.1038/163688a0]
65. Singh, A.P. (2017) Butterflies of India. Om books International, India. 183 p. [DOI:10.1177/1329878X17710385h]
66. Singh, B., Tripathi, S. & Devi, J. (2021) Diversity Assessment of Major Insect Orders in Parvati Aranga Bird Sanctuary District Gonda, Uttar Pradesh, India. International Journal of Research in Applied Sciences and Biotechnology, 8 (3), 150-159.
67. Sondhi, S. & Kunte, K. (2018) Butterflies of Uttarakhand - A Field Guide. Bishen Singh Mahendra Pal Singh (Dehradun), Titli Trust (Dehradun), National Centre for Biological Sciences, Bengaluru. 310 p.
68. Stanbrook, R., Norrey, J., Kisingo, A.W. & Jones, M. (2021) Dung beetle diversity and community composition along a land use gradient in a Savannah Ecosystem of North Western Tanzania. Tropical Conservation Science, 14. [DOI:10.1177/19400829211008756]
69. Upton, M.S. & Mantle, B.L. (2010) Methods for Collecting, Preserving and Studying Insects and Other Terrestrial Arthropods. Paragon Printers Australia, Canberra, Australia. 86 p.
70. Verma, A. (2011) Report of the Proposal for Nandhaur Wildlife Sanctuary. Uttarakhand Forest Department, India. 32 p.
71. Verma, A. (2021) Community structure and bioindicator species of Rhopalocera (Lepidoptera) along elevational gradients in Champawat, Uttarakhand. Ph.D. Thesis, Kumaun University, Uttarakhand, India. 649 p.
72. Verma, A. & Arya, M.K. (2020) Biodiversity of Entomofauna with reference to habitat degradation at Pancheshwar dam site on the River Mahakali, Central Himalaya. In: Kumar, V., Singh, J. & Kumar, P. (eds) Environmental Degradation: Causes & Remediation Strategies. Volume 1, Agro Environ Media (AEM), Publication Cell, Agriculture and Environmental Science Academy, Haridwar, India, pp. 183-204. [DOI:10.26832/aesa-2020-edcrs-013]
73. Wagner, D.L. (2020) Insect declines in the Anthropocene. Annual Review of Entomology, 65 (1), 457-480. [DOI:10.1146/annurev-ento-011019-025151]
74. Whittaker, R.H. (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338. [DOI:10.2307/1943563]
75. Zhang, Z.Q. (2011) Animal biodiversity: An introduction to higher-level classification and taxonomic richness. Zootaxa, 3148, 7-12. [DOI:10.11646/zootaxa.3148.1.2]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.