1. Ahadiyat, A. & Akrami, M.A. (2015) Oribatid mite (Acari: Oribatida) associated with bark beetles (Coleoptera: Curculionidae: Scolytinae) in Iran, with a review on Paraleius leontonychus (Berlese) and a list of bark beetles in association with this species. Persian Journal of Acarology, 4, 355-371.
2. Akbulut, S. & Stamps, W.T. (2012) Insect vectors of the pinewood nematode: A review of the biology and ecology of Monochamus species. Forest Pathology, 42, 89-99. [
DOI:10.1111/j.1439-0329.2011.00733.x]
3. Allouche, O., Tsoar, A. & Kadmon, R. (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. [
DOI:10.1111/j.1365-2664.2006.01214.x]
4. Amini, S., Hosseini, R. & Sohani, M.M. (2013) A faunal study of bark beetles (Coleoptera: Curculionidae: Scolytinae) in Guilan province in North of Iran. Entomofauna, 34, 169-176.
5. Andrew, N.R., Hill, S.J., Binns, M., Bahar, M.H., Ridley, E.V., Jung, M.P. & Khusro, M. (2013) Assessing insect responses to climate change: What are we testing for? Where should we be heading? Peer Journal, 1, e11. [
DOI:10.7717/peerj.11]
6. Arkani, T., Ostovan, H., Farazmand, H. & Gheybi, M. (2018) Seasonal population fluctuations of Mediterranean pine bark beetle, Orthotomicus erosus (Wollaston) (Coleoptera: Curculionidae: Scolytinae), in the Tehran Chitgar forest park. IAU Entomological Research Journal, 9, 309-319.
7. Avci, M. & Sarikaya, O. (2009) Orthotomicus tridentatus Eggers: distribution and biology in cedar forests of Turkey. Turkish Journal of Agriculture and Forestry, 33, 277-283. [
DOI:10.3906/tar-0901-6]
8. Bassett, M.A., Baumgartner, J.B., Hallett, M.L., Hassan, Y. & Symonds, M.R. (2011) Effects of humidity on the response of the bark beetle Ips grandicollis (Eichhoff) (Coleoptera: Curculionidae: Scolytinae) to synthetic aggregation pheromone. Australian Journal of Entomology, 50, 48-51. [
DOI:10.1111/j.1440-6055.2010.00780.x]
9. Barry, S. & Elith, J. (2006) Error and uncertainty in habitat models. Journal of Applied Ecology, 43, 413-423. [
DOI:10.1111/j.1365-2664.2006.01136.x]
10. Beaumont, L.J., Gallagher, R.V., Thuiller, W., Downey, P.O., Leishman, M.R. & Hughes, L. (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 15, 409-420. [
DOI:10.1111/j.1472-4642.2008.00547.x]
11. Bentz, B.J. & Mullins, D.E. (1999). Ecology of mountain pine beetle cold hardening in the Intermountain West. Environmental Entomology, 28, 577-587. [
DOI:10.1093/ee/28.4.577]
12. Bentz, B.J., Logan, J.A. & Amman, G.D. (1991) Temperature-dependent development of the mountain pine beetle (Coleoptera: Scolytidae) and simulation of its phenology. Canadian Entomologist, 123, 1083-1094. [
DOI:10.4039/Ent1231083-5]
13. Bentz, B.J., Regniere, J., Fettig, C.J., Hansen, E.M., Hayes, J.L., Hicke, J.A., Kelsey, R.G. Negron, J.F. & Seybold, S.J. (2010) Climate change and bark beetles of the Western United States and Canada: direct and indirect effects. BioScience, 60, 602-613. [
DOI:10.1525/bio.2010.60.8.6]
14. Berg, E.E., Henry, J.D., Fastie, C.L., De Volder, A.D. & Matsuoka, S.M. (2006) Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. Forest Ecology and Management, 227, 219-232. [
DOI:10.1016/j.foreco.2006.02.038]
15. Brockerhoff, E.G., Kimberley, M., Liebhold, A.M., Haack, R.A. & Cavey, J.F. (2013) Predicting how altering propagule pressure changes establishment rates of biological invaders across species pools. Ecology, 95, 594-601. [
DOI:10.1890/13-0465.1]
16. Cebeci, H.H. & Baydemir, M. (2018) Predators of bark beetles (Coleoptera) in the Balikesir region of Turkey. Revista Colombiana de Entomologia, 44, 283-287. [
DOI:10.25100/socolen.v44i2.7326]
17. Cerrato, C., Lai, V., Balletto, E. & Bonellil, S. (2016) Direct and indirect effects of weather variability in a specialist butterfly. Ecological Entomology, 41, 263-275. [
DOI:10.1111/een.12296]
18. Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M.M., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberon, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151. [
DOI:10.1111/j.2006.0906-7590.04596.x]
19. Elith, J., Phillips, S.J., Hastie, T., Dudik, M., Chee, Y.E. & Yates, C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57. [
DOI:10.1111/j.1472-4642.2010.00725.x]
20. ESRI (2013) ARCMAP. ArcGIS. 10.2. Environmental Systems Research Institute, Redlands, California.
21. Evangelista, P.H., Kumar, S., Stohlgren, T.J. & Young, N.E. (2011) Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US. Forest Ecology and Management, 262, 307-316. [
DOI:10.1016/j.foreco.2011.03.036]
22. Faccoli, M., Gallego, D., Branco, M., Brockerhoff, E.G., Corley, J., Coyle, D.R., Hurley, B.P., Jactel, H., Lakatos, F., Lantschner, V., Lawson, S., Martinez, G., Gomez, D.F. & Avtzis, D. (2020) A first worldwide multispecies survey of invasive Mediterranean pine bark beetles (Coleoptera: Curculionidae, Scolytinae). Biological Invasions, 22, 1785-1799. [
DOI:10.1007/s10530-020-02219-3]
23. Farsani, N.S., Zamani, A.A. & Jamali, S. (2018) Predicting distribution pattern of the Mediterranean pine engraver, Orthotomicus erosus (Coleoptera: Curculionidae: Scolytinae), by geostatistics and artificial neural network. Journal of Entomological Society of Iran, 38, 331-343.
24. Fettig, C.J., Klepzig, K.D., Billings, R.F., Munson, A.S., Nebeker, T.E., Negron, J.F. & Nowak, J.T. (2007) The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. Forest Ecology and Management, 238, 24-53. [
DOI:10.1016/j.foreco.2006.10.011]
25. Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. [
DOI:10.1002/joc.5086]
26. Gan, J.B. (2004) Risk and damage of southern pine beetle outbreaks under global climate change. Forest Ecology and Management, 191, 61-71. [
DOI:10.1016/j.foreco.2003.11.001]
27. Gomez, D.F., Skelton, J., Maria, M.D. & Hulcr, J. (2020) Influence of temperature and precipitation anomaly on the seasonal emergence of invasive bark beetles in subtropical South America. Neotropical Entomology, 49, 347-352. [
DOI:10.1007/s13744-019-00760-y]
28. Google Inc. (2022) Google Earth (Version 7.1.1.1871). Retrieved from http://www.google.com/earth/index.html [Accessed at 15th April 2023].
29. Guisan, A. & Thuiller, W. (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009. [
DOI:10.1111/j.1461-0248.2005.00792.x]
30. Haack, R.A. (2004) Orthotomicus erosus: A new pine-infesting bark beetle in the United States. Newsletter of the Michigan Entomological Society, 49, 3.
31. Henin, J.M. & Paiva, M.R. (2004) Interactions between Orthotomicus erosus (Woll.) (Col., Scolytidae) and the Argentine ant Linepithema humile (Mayr) (Hym., Formicidae). Journal of Pest Science, 77, 113-117. [
DOI:10.1007/s10340-003-0045-y]
32. Hernandez, P.A., Graham, C.H., Master, L.L. & Albert, D.L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785. [
DOI:10.1111/j.0906-7590.2006.04700.x]
33. Hijmans, R.J. & Graham, C.H. (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 1-10. [
DOI:10.1111/j.1365-2486.2006.01256.x]
34. Hulme, P. (2017) Climate change and biological invasions: evidence, expectations, and response options. Biological Reviews, 92, 1297-1313. [
DOI:10.1111/brv.12282]
35. Jalaeian, M., Golizadeh, A., Sarafrazi, A. & Naimi, B. (2018) Inferring climatic controls of rice stem borers' spatial distributions using maximum entropy modelling. Journal of Applied Entomology, 142, 388-396. [
DOI:10.1111/jen.12493]
36. Jiang, Y.P., Huang, Z. Y. & Huang, X.C. (1992) Studies on Orthotomicus erosus. Journal of Zhejiang Normal University (Natural Sciences), 15, 79-81.
37. Jimenez-Valverde, A., Lobo, J.M. & Hortal, J. (2008) Not as good as they seem: The importance of concepts in species distribution modelling. Diversity and Distributions, 14, 885-890. [
DOI:10.1111/j.1472-4642.2008.00496.x]
38. Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schroder, B., Lindenborn, J., Reinfelder, V., Stillfried, M., Heckmann, I., Scharf, A.K., Augeri, D.M., Cheyne, S.M., Hearn, A.J., Ross, J., Macdonald, D.W., Mathai, J., Eaton, J., Marshall, A.J., Semiadi, G., Rustam, R., Bernard, H., Alfred, R., Samejima, H., Duckworth, J.W., Breitenmoser-Wuersten, C., Belant, J.L., Hofer, H. & Wilting, A. (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19, 1366-1379. [
DOI:10.1111/ddi.12096]
39. Kuhnholz, S., Borden, J.H. & Uzunovic, A. (2001) Secondary ambrosia beetles in apparently healthy trees: Adaptations, potential causes and suggested research. Integrated Pest Management Reviews, 6, 209-219. [
DOI:10.1023/A:1025702930580]
40. Kumar, S., Neven, L.G., Zhu, H. & Zhang, R. (2015) Assessing the global risk of establishment of Cydia pomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt niche models. Journal of Economic Entomology, 108, 1708-1719. [
DOI:10.1093/jee/tov166]
41. Lantschner, M.V., Atkinson, T.H., Corley, J. C. & Liebhold, A.M. (2017) Predicting North American Scolytinae invasions in the Southern Hemisphere. Ecological Applications, 27, 66-77. [
DOI:10.1002/eap.1451]
42. Lee, J.C., Smith, S.L. & Seybold, S.J. (2005) The Mediterranean pine engraver, Orthotomicus erosus. Pest Alert R5-PR-016. Berkeley, CA: U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station. 4 p.
43. Lee, J.C., Flint, M.L. & Seybold, S.J. (2008) Suitability of pines and other conifers as hosts for the invasive Mediterranean pine engraver (Coleoptera: Scolytidae) in North America. Journal of Economic Entomology, 101, 829-837. [
DOI:10.1093/jee/101.3.829]
44. Li, Y., Johnson, A.J., Gao, L., Wu, C. & Hulcr, J. (2021) Two new invasive Ips bark beetles (Coleoptera: Curculionidae) in mainland China and their potential distribution in Asia. Pest Management Science, 77, 4000-4008. [
DOI:10.1002/ps.6423]
45. Liebhold, A.M. & Tobin, P.C. (2008) Population ecology of insect invasions and their management. Annual Review of Entomology, 53, 387-408. [
DOI:10.1146/annurev.ento.52.110405.091401]
46. Lissovsky, A.A. & Dudov, S.V. (2021) Species-distribution modeling: advantages and limitations of its application. 2. MaxEnt. Biology Bulletin Reviews, 11, 265-275. [
DOI:10.1134/S2079086421030087]
47. Logan, J.A. & Powell, J.A. (2001) Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). American Entomologist, 47, 160-173. [
DOI:10.1093/ae/47.3.160]
48. Mao, M., Chen, S., Ke, Z., Qian, Z. & Xu, Y. (2022) Using MaxEnt to predict the potential distribution of the little fire ant (Wasmannia auropunctata) in China. Insects, 13, 1008. [
DOI:10.3390/insects13111008]
49. Marini, L., Ayres, M.P., Battisti, A. & Faccoli, M. (2012) Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Climatic Change, 115, 327-341. [
DOI:10.1007/s10584-012-0463-z]
50. Marquardt, D.W. (1970) Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation. Technometrics, 12, 591-612. [
DOI:10.2307/1267205]
51. McCambridge, W.F. (1971) Temperature limits of flight of the mountain pine beetle, Dendroctonus ponderosae. Annals of the Entomological Society of America, 64, 534-535. [
DOI:10.1093/aesa/64.2.534]
52. Mendel, Z. (1983) Seasonal history of Orthotomicus erosus (Coleoptera: Scolytidae) in Israel. Phytoparasitica, 11, 13-24. [
DOI:10.1007/BF02980707]
53. Mendel, Z. & Halperin, J. (1982) The biology and behavior of Orthotomivus erusus in Israel. Phytoparasitica, 10, 169-181. [
DOI:10.1007/BF02994526]
54. Mendel, Z., Boneh, O., Shenhar, Y. & Riov, J. (1991) Diurnal flight patterns of Orthotomicus erosus and Pityogenes calcaratus in Israel. Phytoparasitica, 19, 23-31. [
DOI:10.1007/BF02981008]
55. Mendoza, M.G., Salinas-Moreno, Y., Olivo-Martinez, A. & Zuniga, G. (2011) Factors influencing the geographical distribution of Dendroctonus rhizophagus (Coleoptera: Curculionidae: Scolytinae) in the Sierra Madre Occidental, Mexico. Environmental Entomology, 40, 549-559. [
DOI:10.1603/EN10059]
56. Naimi, B. (2014) usdm: Uncertainty analysis for species distribution models, R Software Package.
57. Naimi, B. & Araujo, M.B. (2016) A reproducible and extensible R platform for species distribution modelling. Ecography, 39, 368-375. [
DOI:10.1111/ecog.01881]
58. Newbold, T., Reader, T., Zalat, S. & El-Gabbas, A. (2009) Effect of characteristics of butterfly species on the accuracy of distribution models in an arid environment. Biodiversity and Conservation, 18, 3629-3641. [
DOI:10.1007/s10531-009-9668-5]
59. Ning, H., Tang, M. & Chen, H. (2021) Mapping invasion potential of the pest from Central Asia, Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae), in the shelter forests of Northwest China. Insects, 12, 242. [
DOI:10.3390/insects12030242]
60. Okland, B., Flo, D., Schroeder, M., Zach, P., Cocos, D., Martikainen, P., Siitonen, J., Mandelshtam, M.Y., Musolin, D.L., Neuvonen, S., Vakula, J., Nikolov, C., Lindelow, A. & Voolma, K. (2019) Range expansion of the small spruce bark beetle Ips amitinus: a newcomer in northern Europe. Agricultural and Forest Entomology, 21, 286-298. [
DOI:10.1111/afe.12331]
61. Ozcan, G.E., Cicek, O., Enez, K. & Yildiz, M. (2014) A new approach to determine the capture conditions of bark beetles in pheromone-baited traps. Biotechnology and Biotechnological Equipment, 2, 1057-1064. [
DOI:10.1080/13102818.2014.974015]
62. Pearce, J. & Ferrie, S. (2000) Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133, 225-245. [
DOI:10.1016/S0304-3800(00)00322-7]
63. Pernek, M., Lackovic, N., Lukic, I., Zoric, N. & Matosevic, D. (2019) Outbreak of Orthotomicus erosus (Coleoptera, Curculionidae) on Aleppo pine in the Mediterranean region in Croatia. South-East European forestry (SEEFOR), 10, 19-27. [
DOI:10.15177/seefor.19-05]
64. Phillips, S.J. & Dudik, M. (2008) Modelling of species distributions with MaxEnt: New extensions and a comprehensive evaluation. Ecography, 31, 161-175. [
DOI:10.1111/j.0906-7590.2008.5203.x]
65. Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259. [
DOI:10.1016/j.ecolmodel.2005.03.026]
66. Phillips, S.J., Dudik, M. & Schapire, R.E. (2023) MaxEnt software for modeling species niches and distributions (Version 3.4.1). Available from http://biodiversityinformatics.amnh.org/open_source/maxent [Accessed at 15th May, 2023]
67. Qin, Y.J., Wang, C., Zhao, Z.H., Pan, X.B. & Li, Z.H. (2019) Climate change impacts on the global potential geographical distribution of the agricultural invasive pest, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Climatic Change, 155, 145-156. [
DOI:10.1007/s10584-019-02460-3]
68. Rabaglia, R.J., Duerr, D., Acciavatti, R. & Ragenovich, I. (2008) Early detection and rapid response for non-native bark and Ambrosia beetles. USDA Forest Service, Forest Health Protection, Washington DC, USA. 12 p.
69. Rassati, D., Faccoli, M., Toffolo, E.R., Battisti, A. & Marini, L. (2015) Improving the early detection of alien wood-boring beetles in ports and surrounding forests. Journal of Applied Ecology, 52, 50-58. [
DOI:10.1111/1365-2664.12347]
70. Salehi-Jouzani, G., Farazmand, H., Saadat, D., Golmohamadi, G. & Amirian, R. (2016) Study on distribution, biology, prevention strategies and control of Mediterranean pine bark beetle, Orthotomicus erosus (Wollaston), in Isfahan. In: Talaei-Hassanloui, R. (ed) Proceedings of the 22nd Iranian Plant Protection Congress, 27-30 August 2016, University of Tehran, Karaj, p. 648.
71. Sanchez-Garcia, F.J., Galian, J. & Gallego, D. (2015) Distribution of Tomicus destruens (Coleoptera: Scolytinae) mitochondrial lineages: phylogeographic insights and niche modelling. Organisms Diversity and Evolution, 15, 101-113. [
DOI:10.1007/s13127-014-0186-2]
72. Sarikaya, O., Ibis, H.M. & Toprak, O. (2013) The flight activity and population density of Orthotomicus erosus (Wollaston, 1857) in the Brutian pine (Pinus brutia Ten.) forests of Izmir Province, Turkey. International Journal of Sciences: Basic and Applied Research, 12, 208-219.
73. Sarikaya, O., Karaceylan, I.B. & Sen, I. (2018) Maximum entropy modeling (MaxEnt) of current and future distributions of Ips mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey. Applied Ecology and Environmental Research, 16, 2527-2535. [
DOI:10.15666/aeer/1603_25272535]
74. Skendzic, S., Zovko, M., Zivkovic, I.P., Lesic, V. & Lemic, D. (2021) The impact of climate change on agricultural insect pests. Insects, 12, 440. [
DOI:10.3390/insects12050440]
75. Taylor, S.W., Carroll, A.L., Alfaro, R.I. & Safranyik, L. (2006) Forest, climate and mountain pine beetle outbreak dynamics in western Canada. In: Safranyik, L. & Wilson, B. (eds) The Mountain Pine Beetle: A Synthesis of Biology, Management and Impacts in Lodgepole Pine. Natural Resources Canada, Canadian Forest Service, Victoria, British Columbia, pp. 67-94.
76. Tognelli, M.F., Roig-Junent, S.A., Marvaldi, A.E., Flores, G.E. & Lobo, J.M. (2009) An evaluation of methods for modelling distribution of Patagonian insects. Revista Chilena de Historia Natural, 82, 347-360. [
DOI:10.4067/S0716-078X2009000300003]
77. Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. & Kadmon, R. (2007) A comparative evaluation of presence-only methods for modelling species distribution. Diversity and Distributions, 13, 397-405. [
DOI:10.1111/j.1472-4642.2007.00346.x]
78. Ungerer, M., Ayres, M. & Lombardero, M. (1999) Climate and the northern distribution limits of Dendroctonus frontalis Zimmerman (Coleoptera: Scolytidae). Journal of Biogeography, 26, 1133-1145. [
DOI:10.1046/j.1365-2699.1999.00363.x]
79. Urvois, T., Auger-Rozenberg, M.A., Roques, A., Rossi, J.P. & Kerdelhue, C. (2021) Climate change impact on the potential geographical distribution of two invading Xylosandrus ambrosia beetles. Scientific Reports, 11, 1339. [
DOI:10.1038/s41598-020-80157-9]
80. Witkowski, R., Dyderski, M.K., Belka, M. & Mazur, A. (2022) Potential European geographical distribution of Gnathotrichus materiarius (Fitch, 1858) (Coleoptera: Scolytinae) under current and future climate conditions. Forests, 13, 1097. [
DOI:10.3390/f13071097]
81. Yu, Y., Chi, Z., Zhang, J., Sun, P., Wang, C. & Pan, X. (2019) Assessing the invasive risk of bark beetles (Curculionidae: Scolytinae and Platypodinae). Annals of the Entomological Society of America, 112, 451-457. [
DOI:10.1093/aesa/saz030]
82. Zabihi, K., Huettmann, F. & Young, B.D. (2021) Predicting multi-species bark beetle (Coleoptera: Curculionidae: Scolytinae) occurrence in Alaska: open-access big GIS-data mining to provide robust inference. Biodiversity Informatics, 16, 1-19. [
DOI:10.17161/bi.v16i1.14758]